亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-based Computational Pathology Predicts Origins for Cancers of Unknown Primary

计算机科学 癌症 机器学习 病理 肿瘤科 模式识别(心理学)
作者
Ming Y. Lu,Melissa Zhao,Maha Shady,Jana Lipkova,Tiffany Y. Chen,Drew F. K. Williamson,Faisal Mahmood
出处
期刊:arXiv: Tissues and Organs 被引量:54
标识
DOI:10.1038/s41586-021-03512-4
摘要

Cancer of unknown primary (CUP) is an enigmatic group of diagnoses where the primary anatomical site of tumor origin cannot be determined. This poses a significant challenge since modern therapeutics such as chemotherapy regimen and immune checkpoint inhibitors are specific to the primary tumor. Recent work has focused on using genomics and transcriptomics for identification of tumor origins. However, genomic testing is not conducted for every patient and lacks clinical penetration in low resource settings. Herein, to overcome these challenges, we present a deep learning-based computational pathology algorithm-TOAD-that can provide a differential diagnosis for CUP using routinely acquired histology slides. We used 17,486 gigapixel whole slide images with known primaries spread over 18 common origins to train a multi-task deep model to simultaneously identify the tumor as primary or metastatic and predict its site of origin. We tested our model on an internal test set of 4,932 cases with known primaries and achieved a top-1 accuracy of 0.84, a top-3 accuracy of 0.94 while on our external test set of 662 cases from 202 different hospitals, it achieved a top-1 and top-3 accuracy of 0.79 and 0.93 respectively. We further curated a dataset of 717 CUP cases from 151 different medical centers and identified a subset of 290 cases for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 50% of cases (\k{appa}=0.4 when adjusted for agreement by chance) and a top-3 agreement of 75%. Our proposed method can be used as an assistive tool to assign differential diagnosis to complicated metastatic and CUP cases and could be used in conjunction with or in lieu of immunohistochemical analysis and extensive diagnostic work-ups to reduce the occurrence of CUP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
11秒前
23秒前
量子星尘发布了新的文献求助30
29秒前
44秒前
量子星尘发布了新的文献求助10
46秒前
47秒前
48秒前
清秀LL完成签到 ,获得积分10
48秒前
学术山芋发布了新的文献求助10
52秒前
一支菜馅儿馄饨完成签到,获得积分20
55秒前
1分钟前
852应助一支菜馅儿馄饨采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Nebula发布了新的文献求助60
1分钟前
栗子味的茶完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
老张完成签到 ,获得积分10
1分钟前
赘婿应助诚心的月光采纳,获得10
1分钟前
科研通AI5应助研友_LBRPOL采纳,获得10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
潇洒绿蕊完成签到,获得积分10
1分钟前
sunshine完成签到 ,获得积分10
1分钟前
归海梦岚完成签到,获得积分0
1分钟前
ccc完成签到 ,获得积分10
1分钟前
繁荣的心情完成签到,获得积分10
1分钟前
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
朴实初夏完成签到,获得积分10
2分钟前
FashionBoy应助朴实初夏采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
靖123456完成签到,获得积分10
2分钟前
朴实初夏发布了新的文献求助10
2分钟前
2分钟前
靖123456发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743768
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605162
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462