化学
电化学
检出限
催化作用
同种类的
微分脉冲伏安法
电极
无机化学
循环伏安法
物理化学
色谱法
有机化学
热力学
物理
作者
Jiahui Wu,Qiaoting Yang,Qian Li,Haiyin Li,Feng Li
标识
DOI:10.1021/acs.analchem.0c05257
摘要
Traditional peroxidase-like nanozyme-based sensors suffer from self-decomposition and high toxicity of H2O2, as well as the interference of color from nanozymes themselves and testing samples. In this work, we adopt nanozymes (two-dimension (2D) MnO2 sheets, manganese dioxide nanosheets (MnNS)) with oxidase-like and peroxidase-like properties as advanced catalysts to develop a novel homogeneous electrochemical sensor for organophosphate pesticides (OPs) using dissolved O2 as a coreactant without the interference of H2O2 and color. Owing to the large surface area and unique catalytic activity of MnNS, a large amount of tetramethylbenzidine (TMB) is catalyzed oxidation, leading to a significantly declined differential pulse voltammetry (DPV) current. Obviously, MnNS display an excellent response to thiocholine, deriving from the catalyzing hydrolysis of acetylthiocholine (ATCh) by acetylcholinesterase (AChE), which switches a homogeneous electrochemical OP detection process based on the depressing AChE activity with a limit of detection (LOD) of 0.025 ng mL–1. The as-proposed strategy on using nanozymes with oxidase-like and peroxidase-like properties to develop a homogeneous electrochemical sensor will provide a new pathway for improving the performance of nanozyme-based sensors, and the established MnNS-based homogeneous electrochemical sensor will find more applications for OP residue determination in food samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI