Chest CBCT-based synthetic CT using cycle-consistent adversarial network with histogram matching

直方图 匹配(统计) 影像引导放射治疗 直方图匹配 锥束ct 基本事实 计算机科学 人工智能 放射治疗计划 计算机断层摄影术 计算机视觉 核医学 放射治疗 数学 医学 医学影像学 放射科 图像(数学) 统计
作者
Richard L. J. Qiu,Yang Lei,Aparna H. Kesarwala,Kristin Higgins,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
标识
DOI:10.1117/12.2581094
摘要

Image-guided radiation therapy (IGRT) is an important technological advancement that has significantly contributed to the accuracy of radiation oncology treatment plan delivery in the last decade. However, the current standard IGRT technique of linac-mounted kilovoltage (kV) cone-beam Computed Tomography (CBCT) has limited soft tissue contrast and is prone to image artifacts, which detract from its clinical utility. It is even worse in chest CBCT compared to other anatomic sites due to respiratory motion, which could lead to mistreatment. Therefore, it is highly desirable to improve CBCT image quality to the level of a planning CT scan. In this study, we propose a novel deep learning-based method, which integrates histogram matching (HM) into a cycle-consistent adversarial network (CycleGAN) framework called HM-CycleGAN, to learn a mapping between chest CBCT images and paired planning CT images obtained at simulation. Histogram matching is performed via an informative maximizing (MaxInfo) loss calculated between planning CT and the synthetic CT (sCT) derived by feeding CBCT into the HM-CycleGAN. The proposed algorithm was evaluated using 15 sets of patient chest CBCT data, each of which has 3-5 daily CBCTs. The planning/simulation CT was used as ground truth for sCTs derived from CBCTs. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were used to quantify the correction accuracy of the proposed algorithm. The mean MAE, PSNR and NCC were 63.2 HU, 30.2 dB, 0.96 over all CBCT fractions. The proposed method showed superior image quality, reduced noise, and artifact severity compared to the scatter correction method. Upon further improvement and clinical assessment, this method could further enhance accuracy of the current IGRT technique. The CBCT-based synthetic CT could be the critical component to achieve online adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
songvv发布了新的文献求助10
刚刚
飒飒发布了新的文献求助10
1秒前
慧灰huihui完成签到,获得积分10
1秒前
Star完成签到,获得积分10
3秒前
3秒前
柔弱的不二完成签到,获得积分10
4秒前
无心的枫完成签到,获得积分10
6秒前
djdh完成签到 ,获得积分10
6秒前
肖果完成签到 ,获得积分10
9秒前
哭泣笑柳发布了新的文献求助10
10秒前
CipherSage应助长安采纳,获得10
11秒前
飒飒完成签到,获得积分10
12秒前
RONG完成签到 ,获得积分10
12秒前
落落完成签到,获得积分10
13秒前
Yan完成签到 ,获得积分10
14秒前
14秒前
谨慎的凝丝完成签到 ,获得积分10
15秒前
雨洋完成签到,获得积分10
16秒前
chi完成签到 ,获得积分10
17秒前
还单身的湘完成签到,获得积分10
19秒前
fyjlfy完成签到 ,获得积分10
19秒前
深情安青应助Nayvue采纳,获得10
20秒前
研友_Y59785完成签到,获得积分0
20秒前
Xiaoxiao发布了新的文献求助10
21秒前
初初见你完成签到,获得积分10
28秒前
31秒前
思源应助淡淡月饼采纳,获得20
31秒前
dd完成签到 ,获得积分10
32秒前
Nayvue发布了新的文献求助10
36秒前
未来的幻想完成签到,获得积分10
38秒前
Kvolu29完成签到,获得积分10
39秒前
长理物电强完成签到,获得积分10
40秒前
若安在完成签到,获得积分10
41秒前
完美世界应助潘特采纳,获得10
42秒前
拼搏问薇完成签到 ,获得积分10
42秒前
单薄乐珍完成签到 ,获得积分0
45秒前
张静枝完成签到 ,获得积分10
45秒前
六步郎完成签到,获得积分10
45秒前
啊怙纲完成签到 ,获得积分10
47秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022