Chest CBCT-based synthetic CT using cycle-consistent adversarial network with histogram matching

直方图 匹配(统计) 影像引导放射治疗 直方图匹配 锥束ct 基本事实 计算机科学 人工智能 放射治疗计划 计算机断层摄影术 计算机视觉 核医学 放射治疗 数学 医学 医学影像学 放射科 图像(数学) 统计
作者
Richard L. J. Qiu,Yang Lei,Aparna H. Kesarwala,Kristin Higgins,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
标识
DOI:10.1117/12.2581094
摘要

Image-guided radiation therapy (IGRT) is an important technological advancement that has significantly contributed to the accuracy of radiation oncology treatment plan delivery in the last decade. However, the current standard IGRT technique of linac-mounted kilovoltage (kV) cone-beam Computed Tomography (CBCT) has limited soft tissue contrast and is prone to image artifacts, which detract from its clinical utility. It is even worse in chest CBCT compared to other anatomic sites due to respiratory motion, which could lead to mistreatment. Therefore, it is highly desirable to improve CBCT image quality to the level of a planning CT scan. In this study, we propose a novel deep learning-based method, which integrates histogram matching (HM) into a cycle-consistent adversarial network (CycleGAN) framework called HM-CycleGAN, to learn a mapping between chest CBCT images and paired planning CT images obtained at simulation. Histogram matching is performed via an informative maximizing (MaxInfo) loss calculated between planning CT and the synthetic CT (sCT) derived by feeding CBCT into the HM-CycleGAN. The proposed algorithm was evaluated using 15 sets of patient chest CBCT data, each of which has 3-5 daily CBCTs. The planning/simulation CT was used as ground truth for sCTs derived from CBCTs. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were used to quantify the correction accuracy of the proposed algorithm. The mean MAE, PSNR and NCC were 63.2 HU, 30.2 dB, 0.96 over all CBCT fractions. The proposed method showed superior image quality, reduced noise, and artifact severity compared to the scatter correction method. Upon further improvement and clinical assessment, this method could further enhance accuracy of the current IGRT technique. The CBCT-based synthetic CT could be the critical component to achieve online adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wang完成签到 ,获得积分20
刚刚
傅寒天完成签到,获得积分10
刚刚
Alielie完成签到,获得积分10
1秒前
1秒前
淡淡阁完成签到 ,获得积分10
2秒前
高大莺发布了新的文献求助10
2秒前
Brady6完成签到,获得积分10
3秒前
咕噜噜咕噜完成签到,获得积分10
4秒前
佳佳应助研友_5Zl9D8采纳,获得10
4秒前
Tough完成签到 ,获得积分10
5秒前
Jasper应助萌萌采纳,获得10
5秒前
wennuan0913完成签到 ,获得积分10
5秒前
沉静的浩然完成签到,获得积分10
5秒前
深情白风完成签到 ,获得积分10
6秒前
一粟的粉r完成签到 ,获得积分10
6秒前
上官若男应助哇wwwww采纳,获得10
6秒前
甜甜圈完成签到,获得积分10
6秒前
osachon完成签到,获得积分10
7秒前
8秒前
乐乐应助甜美白昼采纳,获得10
8秒前
阿湫完成签到,获得积分10
8秒前
8秒前
五味杂陈完成签到,获得积分10
9秒前
卑以自牧完成签到,获得积分10
9秒前
不爱喝纯牛奶完成签到,获得积分10
10秒前
王多肉完成签到,获得积分10
10秒前
WZW完成签到,获得积分10
11秒前
xun关注了科研通微信公众号
11秒前
要减肥香水完成签到,获得积分10
11秒前
11秒前
久旱逢甘霖完成签到 ,获得积分10
12秒前
黎明完成签到,获得积分10
12秒前
melody完成签到,获得积分10
13秒前
王正浩完成签到 ,获得积分10
13秒前
重要手机完成签到 ,获得积分10
13秒前
杨小羊完成签到,获得积分10
13秒前
HonS发布了新的文献求助10
13秒前
科研人完成签到,获得积分10
14秒前
addi111完成签到,获得积分10
14秒前
123发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968603
求助须知:如何正确求助?哪些是违规求助? 3513420
关于积分的说明 11168029
捐赠科研通 3248900
什么是DOI,文献DOI怎么找? 1794540
邀请新用户注册赠送积分活动 875187
科研通“疑难数据库(出版商)”最低求助积分说明 804676