已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Chest CBCT-based synthetic CT using cycle-consistent adversarial network with histogram matching

直方图 匹配(统计) 影像引导放射治疗 直方图匹配 锥束ct 基本事实 计算机科学 人工智能 放射治疗计划 计算机断层摄影术 计算机视觉 核医学 放射治疗 数学 医学 医学影像学 放射科 图像(数学) 统计
作者
Richard L. J. Qiu,Yang Lei,Aparna H. Kesarwala,Kristin Higgins,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
标识
DOI:10.1117/12.2581094
摘要

Image-guided radiation therapy (IGRT) is an important technological advancement that has significantly contributed to the accuracy of radiation oncology treatment plan delivery in the last decade. However, the current standard IGRT technique of linac-mounted kilovoltage (kV) cone-beam Computed Tomography (CBCT) has limited soft tissue contrast and is prone to image artifacts, which detract from its clinical utility. It is even worse in chest CBCT compared to other anatomic sites due to respiratory motion, which could lead to mistreatment. Therefore, it is highly desirable to improve CBCT image quality to the level of a planning CT scan. In this study, we propose a novel deep learning-based method, which integrates histogram matching (HM) into a cycle-consistent adversarial network (CycleGAN) framework called HM-CycleGAN, to learn a mapping between chest CBCT images and paired planning CT images obtained at simulation. Histogram matching is performed via an informative maximizing (MaxInfo) loss calculated between planning CT and the synthetic CT (sCT) derived by feeding CBCT into the HM-CycleGAN. The proposed algorithm was evaluated using 15 sets of patient chest CBCT data, each of which has 3-5 daily CBCTs. The planning/simulation CT was used as ground truth for sCTs derived from CBCTs. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were used to quantify the correction accuracy of the proposed algorithm. The mean MAE, PSNR and NCC were 63.2 HU, 30.2 dB, 0.96 over all CBCT fractions. The proposed method showed superior image quality, reduced noise, and artifact severity compared to the scatter correction method. Upon further improvement and clinical assessment, this method could further enhance accuracy of the current IGRT technique. The CBCT-based synthetic CT could be the critical component to achieve online adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光能使者完成签到,获得积分10
2秒前
5秒前
5秒前
清风明月完成签到 ,获得积分10
6秒前
Sophiaye完成签到,获得积分10
7秒前
只想发财发布了新的文献求助10
7秒前
芯之痕发布了新的文献求助10
8秒前
xiuxiuzhang完成签到 ,获得积分10
8秒前
排骨大王完成签到,获得积分10
9秒前
11秒前
LILING发布了新的文献求助10
12秒前
菲菲酱完成签到 ,获得积分10
13秒前
18秒前
jin发布了新的文献求助10
19秒前
隐形曼青应助大恶魔宝拉采纳,获得30
21秒前
WindDreamer完成签到,获得积分10
22秒前
是述不是沭完成签到,获得积分10
23秒前
落落完成签到 ,获得积分0
24秒前
24秒前
风清扬应助现代期待采纳,获得30
25秒前
科研通AI5应助ruter采纳,获得10
25秒前
27秒前
Yu完成签到,获得积分10
28秒前
30秒前
春山完成签到 ,获得积分10
30秒前
林林完成签到,获得积分10
30秒前
31秒前
Rondab应助蓝色天空采纳,获得10
31秒前
Dz1990m发布了新的文献求助10
32秒前
Yu发布了新的文献求助10
33秒前
34秒前
77完成签到,获得积分10
35秒前
科研佟完成签到 ,获得积分10
36秒前
努力的淼淼完成签到 ,获得积分10
36秒前
36秒前
天真彩虹完成签到 ,获得积分10
37秒前
陶醉的烤鸡完成签到 ,获得积分10
37秒前
RR发布了新的文献求助10
37秒前
77发布了新的文献求助10
38秒前
聪慧的从雪完成签到 ,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976572
求助须知:如何正确求助?哪些是违规求助? 3520659
关于积分的说明 11204365
捐赠科研通 3257284
什么是DOI,文献DOI怎么找? 1798667
邀请新用户注册赠送积分活动 877835
科研通“疑难数据库(出版商)”最低求助积分说明 806577