亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Chest CBCT-based synthetic CT using cycle-consistent adversarial network with histogram matching

直方图 匹配(统计) 影像引导放射治疗 直方图匹配 锥束ct 基本事实 计算机科学 人工智能 放射治疗计划 计算机断层摄影术 计算机视觉 核医学 放射治疗 数学 医学 医学影像学 放射科 图像(数学) 统计
作者
Richard L. J. Qiu,Yang Lei,Aparna H. Kesarwala,Kristin Higgins,Jeffrey D. Bradley,Walter J. Curran,Tian Liu,Xiaofeng Yang
标识
DOI:10.1117/12.2581094
摘要

Image-guided radiation therapy (IGRT) is an important technological advancement that has significantly contributed to the accuracy of radiation oncology treatment plan delivery in the last decade. However, the current standard IGRT technique of linac-mounted kilovoltage (kV) cone-beam Computed Tomography (CBCT) has limited soft tissue contrast and is prone to image artifacts, which detract from its clinical utility. It is even worse in chest CBCT compared to other anatomic sites due to respiratory motion, which could lead to mistreatment. Therefore, it is highly desirable to improve CBCT image quality to the level of a planning CT scan. In this study, we propose a novel deep learning-based method, which integrates histogram matching (HM) into a cycle-consistent adversarial network (CycleGAN) framework called HM-CycleGAN, to learn a mapping between chest CBCT images and paired planning CT images obtained at simulation. Histogram matching is performed via an informative maximizing (MaxInfo) loss calculated between planning CT and the synthetic CT (sCT) derived by feeding CBCT into the HM-CycleGAN. The proposed algorithm was evaluated using 15 sets of patient chest CBCT data, each of which has 3-5 daily CBCTs. The planning/simulation CT was used as ground truth for sCTs derived from CBCTs. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC) indices were used to quantify the correction accuracy of the proposed algorithm. The mean MAE, PSNR and NCC were 63.2 HU, 30.2 dB, 0.96 over all CBCT fractions. The proposed method showed superior image quality, reduced noise, and artifact severity compared to the scatter correction method. Upon further improvement and clinical assessment, this method could further enhance accuracy of the current IGRT technique. The CBCT-based synthetic CT could be the critical component to achieve online adaptive radiation therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14523698发布了新的文献求助10
1秒前
1秒前
3秒前
小马完成签到,获得积分10
4秒前
九玫离瑰完成签到,获得积分10
7秒前
whh123发布了新的文献求助10
9秒前
北陌完成签到,获得积分10
14秒前
机灵的海蓝完成签到 ,获得积分10
15秒前
For-t-完成签到 ,获得积分10
16秒前
19秒前
26秒前
27秒前
14523698发布了新的文献求助10
34秒前
YSY完成签到,获得积分10
37秒前
tuanheqi应助Ma采纳,获得50
37秒前
天才小熊猫完成签到,获得积分10
40秒前
欢呼的豆芽完成签到,获得积分10
44秒前
帝国之花发布了新的文献求助10
44秒前
科研通AI2S应助九玫离瑰采纳,获得10
46秒前
48秒前
52秒前
14523698发布了新的文献求助10
55秒前
勤劳的铭完成签到,获得积分10
1分钟前
自信语雪发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助thousandlong采纳,获得10
1分钟前
14523698发布了新的文献求助10
1分钟前
1分钟前
thousandlong完成签到,获得积分10
1分钟前
奔跑的神灯完成签到 ,获得积分10
1分钟前
thousandlong发布了新的文献求助10
1分钟前
maher完成签到,获得积分10
1分钟前
1分钟前
沙之聚应助maher采纳,获得50
1分钟前
14523698发布了新的文献求助10
1分钟前
1分钟前
顾矜应助14523698采纳,获得10
1分钟前
1分钟前
1分钟前
haha发布了新的文献求助10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248713
求助须知:如何正确求助?哪些是违规求助? 2892145
关于积分的说明 8270068
捐赠科研通 2560260
什么是DOI,文献DOI怎么找? 1388965
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627823