Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms

强化学习 泥灰岩 计算机科学 人工智能 领域(数学) 机器学习 趋同(经济学) 管理科学 数学 工程类 经济增长 生物 构造盆地 古生物学 经济 纯数学
作者
Kaiqing Zhang,Zhuoran Yang,Tamer Başar
出处
期刊:Studies in systems, decision and control 卷期号:: 321-384 被引量:574
标识
DOI:10.1007/978-3-030-60990-0_12
摘要

Recent years have witnessed significant advances in reinforcement learning (RL), which has registered tremendous success in solving various sequential decision-making problems in machine learning. Most of the successful RL applications, e.g., the games of Go and Poker, robotics, and autonomous driving, involve the participation of more than one single agent, which naturally fall into the realm of multi-agent RL (MARL), a domain with a relatively long history, and has recently re-emerged due to advances in single-agent RL techniques. Though empirically successful, theoretical foundations for MARL are relatively lacking in the literature. In this chapter, we provide a selective overview of MARL, with focus on algorithms backed by theoretical analysis. More specifically, we review the theoretical results of MARL algorithms mainly within two representative frameworks, Markov/stochastic games and extensive-form games, in accordance with the types of tasks they address, i.e., fully cooperative, fully competitive, and a mix of the two. We also introduce several significant but challenging applications of these algorithms. Orthogonal to the existing reviews on MARL, we highlight several new angles and taxonomies of MARL theory, including learning in extensive-form games, decentralized MARL with networked agents, MARL in the mean-field regime, (non-)convergence of policy-based methods for learning in games, etc. Some of the new angles extrapolate from our own research endeavors and interests. Our overall goal with this chapter is, beyond providing an assessment of the current state of the field on the mark, to identify fruitful future research directions on theoretical studies of MARL. We expect this chapter to serve as continuing stimulus for researchers interested in working on this exciting while challenging topic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江余怅晚发布了新的文献求助10
2秒前
小武wwwww完成签到,获得积分10
4秒前
4秒前
psycho完成签到,获得积分10
4秒前
小萝卜完成签到,获得积分10
4秒前
琉璃苣应助和谐为上采纳,获得10
4秒前
1874完成签到,获得积分20
6秒前
完美世界应助lane采纳,获得10
8秒前
尽快毕业完成签到 ,获得积分10
9秒前
小武wwwww发布了新的文献求助10
9秒前
13秒前
14秒前
15秒前
17秒前
17秒前
一个酸葡萄干完成签到,获得积分10
17秒前
欢呼的凌兰完成签到,获得积分10
18秒前
19秒前
NPC完成签到,获得积分20
19秒前
愉快的楷瑞完成签到,获得积分10
20秒前
超文献发布了新的文献求助10
21秒前
杨琴完成签到,获得积分10
22秒前
zengzengxu发布了新的文献求助20
23秒前
端庄的小蝴蝶完成签到,获得积分10
23秒前
怕孤单的思雁完成签到,获得积分10
24秒前
皑似山上雪完成签到,获得积分10
25秒前
26秒前
小马日常挨打完成签到 ,获得积分10
27秒前
润喉糖完成签到,获得积分20
28秒前
33秒前
34秒前
35秒前
Zhangll完成签到 ,获得积分10
37秒前
乐乐发布了新的文献求助30
39秒前
40秒前
隐形曼青应助木子李33采纳,获得30
43秒前
Cassie应助XIL采纳,获得10
45秒前
加菲丰丰举报求助违规成功
46秒前
爱静静举报求助违规成功
46秒前
Singularity举报求助违规成功
46秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043