Foveal avascular zone segmentation in optical coherence tomography angiography images using a deep learning approach

中央凹无血管区 人工智能 糖尿病性视网膜病变 协议限制 光学相干断层摄影术 卷积神经网络 分割 医学 计算机科学 光学相干层析成像 软件 眼科 核医学 计算机视觉 糖尿病 程序设计语言 内分泌学
作者
Reza Mirshahi,Pasha Anvari,Hamid Riazi‐Esfahani,Mahsa Sardarinia,Masood Naseripour,Khalil Ghasemi Falavarjani
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:35
标识
DOI:10.1038/s41598-020-80058-x
摘要

Abstract The purpose of this study was to introduce a new deep learning (DL) model for segmentation of the fovea avascular zone (FAZ) in en face optical coherence tomography angiography (OCTA) and compare the results with those of the device’s built-in software and manual measurements in healthy subjects and diabetic patients. In this retrospective study, FAZ borders were delineated in the inner retinal slab of 3 × 3 enface OCTA images of 131 eyes of 88 diabetic patients and 32 eyes of 18 healthy subjects. To train a deep convolutional neural network (CNN) model, 126 enface OCTA images (104 eyes with diabetic retinopathy and 22 normal eyes) were used as training/validation dataset. Then, the accuracy of the model was evaluated using a dataset consisting of OCTA images of 10 normal eyes and 27 eyes with diabetic retinopathy. The CNN model was based on Detectron2, an open-source modular object detection library. In addition, automated FAZ measurements were conducted using the device’s built-in commercial software, and manual FAZ delineation was performed using ImageJ software. Bland–Altman analysis was used to show 95% limit of agreement (95% LoA) between different methods. The mean dice similarity coefficient of the DL model was 0.94 ± 0.04 in the testing dataset. There was excellent agreement between automated, DL model and manual measurements of FAZ in healthy subjects (95% LoA of − 0.005 to 0.026 mm 2 between automated and manual measurement and 0.000 to 0.009 mm 2 between DL and manual FAZ area). In diabetic eyes, the agreement between DL and manual measurements was excellent (95% LoA of − 0.063 to 0.095), however, there was a poor agreement between the automated and manual method (95% LoA of − 0.186 to 0.331). The presence of diabetic macular edema and intraretinal cysts at the fovea were associated with erroneous FAZ measurements by the device’s built-in software. In conclusion, the DL model showed an excellent accuracy in detection of FAZ border in enfaces OCTA images of both diabetic patients and healthy subjects. The DL and manual measurements outperformed the automated measurements of the built-in software.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mr.Su完成签到 ,获得积分10
1秒前
efls发布了新的文献求助20
2秒前
个性向卉完成签到,获得积分10
2秒前
张金金发布了新的文献求助10
2秒前
gejun完成签到,获得积分20
2秒前
莫愁发布了新的文献求助10
2秒前
zyw完成签到,获得积分10
3秒前
3秒前
4秒前
菠萝蜜完成签到 ,获得积分10
4秒前
4秒前
Lyuhng+1完成签到 ,获得积分10
4秒前
4秒前
吴世勋fans完成签到,获得积分10
5秒前
我是站长才怪应助zyh采纳,获得20
6秒前
7秒前
7秒前
风趣翠霜应助猴子大王666采纳,获得10
7秒前
最棒哒发布了新的文献求助10
8秒前
云山发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
Money发布了新的文献求助10
10秒前
芋泥猫猫丸完成签到 ,获得积分10
10秒前
罗博超发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助星落枝头采纳,获得10
10秒前
潇笑发布了新的文献求助20
10秒前
桃子发布了新的文献求助10
10秒前
小糖发布了新的文献求助30
11秒前
12秒前
12秒前
12秒前
chenm0333042发布了新的文献求助10
13秒前
zhixian完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139