Application of Two New Feature Fusion Networks to Improve Real-time Prostate Capsula Detection

前列腺 人工智能 主成分分析 计算机科学 滤波器(信号处理) 探测器 特征(语言学) 模式识别(心理学) 医学 计算机视觉 内科学 电信 语言学 癌症 哲学
作者
Shixiao Wu,Chengcheng Guo,Xinghuan Wang
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:17 (9): 1128-1136 被引量:1
标识
DOI:10.2174/1573405617666210129110832
摘要

Excess prostate tissue is trimmed near the prostate capsula boundary during transurethral plasma kinetic enucleation of prostate (PKEP) and transurethral bipolar plasmakinetic resection of prostate (PKRP) surgeries. If a large portion of the tissue is removed, a prostate capsula perforation can potentially occur. As such, real-time accurate prostate capsula (PC) detection is critical for the prevention of these perforations.This study investigated the potential for using image denoising, image dimension reduction and feature fusion to improve real-time prostate capsula detection with two objectives. First, this paper mainly studied feature selection and input dimension reduction. Secondly, image denoising was evaluated, as it is of paramount importance to transient stability assessment based on neural networks.Two new feature fusion techniques, maxpooling bilinear interpolation single-shot multibox detector (PBSSD) and bilinear interpolation single shot multibox detector (BSSD) were proposed. Before original images were sent to the neural network, they were processed by principal component analysis (PCA) and adaptive median filter (AMF) for dimension reduction and image denoising.The results showed that the application of PCA and AMF with PBSSD increased the mean average precision (mAP) for prostate capsula images by 8.55% and reached 80.15%, compared with single shot multibox detector (SSD) alone. Application of PCA with BSSD increased the mAP for prostate capsula images by 4.6% compared with SSD alone.Compared with other methods, ours were proven to be more accurate for real-time prostate capsula detection. The improved mAP results suggest that the proposed approaches are powerful tools for improving SSD networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨落发布了新的文献求助10
1秒前
月亮打盹儿完成签到 ,获得积分10
2秒前
田田完成签到,获得积分10
2秒前
橘子关注了科研通微信公众号
2秒前
小苹果完成签到,获得积分10
4秒前
WD完成签到 ,获得积分10
5秒前
6秒前
酷波er应助三和小神采纳,获得10
7秒前
cailiaokexue完成签到,获得积分10
8秒前
大个应助雨落采纳,获得10
8秒前
zz完成签到,获得积分10
10秒前
whq531608发布了新的文献求助30
10秒前
像心跳完成签到 ,获得积分10
11秒前
13秒前
13秒前
15秒前
16秒前
雨落完成签到,获得积分10
16秒前
enli完成签到,获得积分10
17秒前
寒冷晓凡发布了新的文献求助10
18秒前
Akim应助迷路以筠采纳,获得10
20秒前
27秒前
珊珊完成签到 ,获得积分10
30秒前
Shuai发布了新的文献求助10
31秒前
迷路以筠发布了新的文献求助10
32秒前
寒冷晓凡完成签到,获得积分10
34秒前
chenhunhun完成签到,获得积分10
35秒前
tingting完成签到,获得积分10
38秒前
隐形曼青应助冷言采纳,获得10
39秒前
39秒前
任性的梦菲完成签到,获得积分10
40秒前
香蕉觅云应助Kamelia采纳,获得10
40秒前
最好的完成签到,获得积分10
40秒前
40秒前
YAAAO发布了新的文献求助10
41秒前
落竹完成签到,获得积分10
42秒前
css1997完成签到 ,获得积分10
43秒前
zzl发布了新的文献求助10
43秒前
lin关闭了lin文献求助
45秒前
检检边lin完成签到,获得积分10
46秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3572296
求助须知:如何正确求助?哪些是违规求助? 3142501
关于积分的说明 9448015
捐赠科研通 2843973
什么是DOI,文献DOI怎么找? 1563103
邀请新用户注册赠送积分活动 731630
科研通“疑难数据库(出版商)”最低求助积分说明 718640