High-Low Promotion Policies for Peak-End Demand Models

收入 晋升(国际象棋) 数学优化 经济 计算机科学 动态规划 动态定价 有界函数 微观经济学 数学 财务 数学分析 政治 政治学 法学
作者
Tamar Cohen-Hillel,Kiran Panchamgam,Georgia Perakis
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2016-2050 被引量:5
标识
DOI:10.1287/mnsc.2022.4477
摘要

In-store promotions are a highly effective marketing tool that can have a significant impact on revenue. In this research, we study the question of dynamic promotion planning in the face of Bounded-Memory Peak-End demand models. In order to determine promotion strategies, we establish that a High-Low pricing policy is optimal under diagonal dominance conditions (so that the current period price dominates both past period price effects and competitive product price effects on the demand), as well as conditions on the price dispersion. We show that finding the optimal High-Low dynamic promotion policy is NP-hard in the strong sense. Nevertheless, for the special case of promotion planning for a single item, we propose a compact Dynamic Programming (DP) approach that can find the optimal promotion plan that follows a High-Low policy in polynomial time. When the diagonal dominance conditions do not hold, and, hence, a High-Low policy is not necessarily optimal, we show that the optimal High-Low policy that is found by our proposed DP can find a provably near-optimal solution. Using the proposed DP as a subroutine, for the case of multiple items, we propose a Polynomial-Time-Approximation Scheme (PTAS) that can find a solution that can capture at least [Formula: see text] of the optimal revenue and runs in time that is exponential only in [Formula: see text]. Finally, we test our approach on data from large retailers and demonstrate an average of [Formula: see text] increase in revenue relative to the retailer’s current practices. This paper was accepted by Chung Piaw Teo, optimization. Funding: Financial support from the Oracle Corporation [External Research Office grant] and the National Science Foundation [Grant CMMI-1162034] is gratefully acknowledged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CAIJING完成签到,获得积分10
1秒前
摔跤的猫发布了新的文献求助10
3秒前
慕青应助文竹采纳,获得10
3秒前
3秒前
ccm完成签到,获得积分10
4秒前
DLY完成签到,获得积分20
5秒前
5秒前
千柳发布了新的文献求助10
5秒前
5秒前
6秒前
fireking_sid发布了新的文献求助50
6秒前
英俊的铭应助往返采纳,获得10
7秒前
ccm发布了新的文献求助10
7秒前
7秒前
橘子完成签到 ,获得积分10
8秒前
微笑的语芙完成签到,获得积分10
11秒前
sunshine完成签到,获得积分20
11秒前
yyjy发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
深情安青应助keyun采纳,获得10
13秒前
乖猫要努力应助Aoka采纳,获得10
14秒前
15秒前
连渡发布了新的文献求助10
15秒前
阿占完成签到,获得积分10
16秒前
jessica完成签到,获得积分10
18秒前
往返发布了新的文献求助10
19秒前
20秒前
无花果应助笔墨留香采纳,获得10
22秒前
情怀应助0美团外卖0采纳,获得10
22秒前
摔跤的猫完成签到,获得积分10
22秒前
谦让l发布了新的文献求助10
25秒前
29秒前
29秒前
30秒前
连渡完成签到,获得积分10
31秒前
天顺完成签到,获得积分10
32秒前
笔墨留香发布了新的文献求助10
33秒前
Shilly发布了新的文献求助20
34秒前
天顺发布了新的文献求助10
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182