High-Low Promotion Policies for Peak-End Demand Models

收入 晋升(国际象棋) 数学优化 经济 计算机科学 动态规划 动态定价 有界函数 微观经济学 数学 财务 政治学 政治 数学分析 法学
作者
Tamar Cohen-Hillel,Kiran Panchamgam,Georgia Perakis
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2016-2050 被引量:5
标识
DOI:10.1287/mnsc.2022.4477
摘要

In-store promotions are a highly effective marketing tool that can have a significant impact on revenue. In this research, we study the question of dynamic promotion planning in the face of Bounded-Memory Peak-End demand models. In order to determine promotion strategies, we establish that a High-Low pricing policy is optimal under diagonal dominance conditions (so that the current period price dominates both past period price effects and competitive product price effects on the demand), as well as conditions on the price dispersion. We show that finding the optimal High-Low dynamic promotion policy is NP-hard in the strong sense. Nevertheless, for the special case of promotion planning for a single item, we propose a compact Dynamic Programming (DP) approach that can find the optimal promotion plan that follows a High-Low policy in polynomial time. When the diagonal dominance conditions do not hold, and, hence, a High-Low policy is not necessarily optimal, we show that the optimal High-Low policy that is found by our proposed DP can find a provably near-optimal solution. Using the proposed DP as a subroutine, for the case of multiple items, we propose a Polynomial-Time-Approximation Scheme (PTAS) that can find a solution that can capture at least [Formula: see text] of the optimal revenue and runs in time that is exponential only in [Formula: see text]. Finally, we test our approach on data from large retailers and demonstrate an average of [Formula: see text] increase in revenue relative to the retailer’s current practices. This paper was accepted by Chung Piaw Teo, optimization. Funding: Financial support from the Oracle Corporation [External Research Office grant] and the National Science Foundation [Grant CMMI-1162034] is gratefully acknowledged.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄绮露发布了新的文献求助10
刚刚
天抒完成签到,获得积分10
1秒前
1秒前
2秒前
查理发布了新的文献求助30
3秒前
3秒前
4秒前
再沉默完成签到,获得积分10
4秒前
研友_Z34DG8发布了新的文献求助10
5秒前
5秒前
活泼凌青发布了新的文献求助10
6秒前
科目三应助甜甜小蜜蜂采纳,获得10
6秒前
stk完成签到,获得积分10
6秒前
再沉默发布了新的文献求助10
7秒前
7秒前
Ni发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
飞羽发布了新的文献求助10
11秒前
astral完成签到,获得积分10
12秒前
shine发布了新的文献求助10
12秒前
GealAntS完成签到,获得积分0
12秒前
14秒前
健壮问兰发布了新的文献求助10
14秒前
flying完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
lhh发布了新的文献求助10
15秒前
冷艳的妙竹完成签到,获得积分10
16秒前
PANDA完成签到,获得积分10
16秒前
flying发布了新的文献求助10
18秒前
CodeCraft应助jack潘采纳,获得10
18秒前
缓慢的鲜花完成签到,获得积分10
21秒前
JHK发布了新的文献求助10
22秒前
追寻紫安应助YuJianQiao采纳,获得10
22秒前
lhh完成签到,获得积分10
23秒前
科研通AI2S应助热情的幻丝采纳,获得10
24秒前
研友_VZG7GZ应助水聿采纳,获得10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260545
求助须知:如何正确求助?哪些是违规求助? 2901746
关于积分的说明 8316854
捐赠科研通 2571281
什么是DOI,文献DOI怎么找? 1396969
科研通“疑难数据库(出版商)”最低求助积分说明 653604
邀请新用户注册赠送积分活动 632040