High-Low Promotion Policies for Peak-End Demand Models

收入 晋升(国际象棋) 数学优化 经济 计算机科学 动态规划 动态定价 有界函数 微观经济学 数学 财务 数学分析 政治 政治学 法学
作者
Tamar Cohen-Hillel,Kiran Panchamgam,Georgia Perakis
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2016-2050 被引量:5
标识
DOI:10.1287/mnsc.2022.4477
摘要

In-store promotions are a highly effective marketing tool that can have a significant impact on revenue. In this research, we study the question of dynamic promotion planning in the face of Bounded-Memory Peak-End demand models. In order to determine promotion strategies, we establish that a High-Low pricing policy is optimal under diagonal dominance conditions (so that the current period price dominates both past period price effects and competitive product price effects on the demand), as well as conditions on the price dispersion. We show that finding the optimal High-Low dynamic promotion policy is NP-hard in the strong sense. Nevertheless, for the special case of promotion planning for a single item, we propose a compact Dynamic Programming (DP) approach that can find the optimal promotion plan that follows a High-Low policy in polynomial time. When the diagonal dominance conditions do not hold, and, hence, a High-Low policy is not necessarily optimal, we show that the optimal High-Low policy that is found by our proposed DP can find a provably near-optimal solution. Using the proposed DP as a subroutine, for the case of multiple items, we propose a Polynomial-Time-Approximation Scheme (PTAS) that can find a solution that can capture at least [Formula: see text] of the optimal revenue and runs in time that is exponential only in [Formula: see text]. Finally, we test our approach on data from large retailers and demonstrate an average of [Formula: see text] increase in revenue relative to the retailer’s current practices. This paper was accepted by Chung Piaw Teo, optimization. Funding: Financial support from the Oracle Corporation [External Research Office grant] and the National Science Foundation [Grant CMMI-1162034] is gratefully acknowledged.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
woody完成签到,获得积分10
1秒前
许译匀发布了新的文献求助10
1秒前
3秒前
zyh完成签到 ,获得积分10
3秒前
HHHAN完成签到,获得积分10
3秒前
4秒前
Doris发布了新的文献求助30
4秒前
5秒前
5秒前
guozizi发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
lemon发布了新的文献求助10
8秒前
LILI完成签到,获得积分10
8秒前
斯文败类应助智者采纳,获得10
8秒前
Tian完成签到,获得积分10
9秒前
hwasaa完成签到,获得积分10
9秒前
在水一方应助小鱼采纳,获得10
9秒前
aujsdhab应助炙热尔烟采纳,获得10
10秒前
袁琴发布了新的文献求助10
10秒前
平淡广山完成签到,获得积分10
11秒前
诸岩完成签到,获得积分10
11秒前
12秒前
12秒前
彭于晏应助阿盖采纳,获得10
12秒前
ding应助lemon采纳,获得10
13秒前
科研通AI2S应助####采纳,获得10
13秒前
wanci应助我不喜欢吃蔬菜采纳,获得10
13秒前
阿龙发布了新的文献求助10
13秒前
甜美枫完成签到,获得积分10
15秒前
跑快点发布了新的文献求助10
15秒前
17秒前
舒苏应助科研通管家采纳,获得60
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
好好应助科研通管家采纳,获得10
17秒前
buno应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605