High-Low Promotion Policies for Peak-End Demand Models

收入 晋升(国际象棋) 数学优化 经济 计算机科学 动态规划 动态定价 有界函数 微观经济学 数学 财务 数学分析 政治 政治学 法学
作者
Tamar Cohen-Hillel,Kiran Panchamgam,Georgia Perakis
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (4): 2016-2050 被引量:5
标识
DOI:10.1287/mnsc.2022.4477
摘要

In-store promotions are a highly effective marketing tool that can have a significant impact on revenue. In this research, we study the question of dynamic promotion planning in the face of Bounded-Memory Peak-End demand models. In order to determine promotion strategies, we establish that a High-Low pricing policy is optimal under diagonal dominance conditions (so that the current period price dominates both past period price effects and competitive product price effects on the demand), as well as conditions on the price dispersion. We show that finding the optimal High-Low dynamic promotion policy is NP-hard in the strong sense. Nevertheless, for the special case of promotion planning for a single item, we propose a compact Dynamic Programming (DP) approach that can find the optimal promotion plan that follows a High-Low policy in polynomial time. When the diagonal dominance conditions do not hold, and, hence, a High-Low policy is not necessarily optimal, we show that the optimal High-Low policy that is found by our proposed DP can find a provably near-optimal solution. Using the proposed DP as a subroutine, for the case of multiple items, we propose a Polynomial-Time-Approximation Scheme (PTAS) that can find a solution that can capture at least [Formula: see text] of the optimal revenue and runs in time that is exponential only in [Formula: see text]. Finally, we test our approach on data from large retailers and demonstrate an average of [Formula: see text] increase in revenue relative to the retailer’s current practices. This paper was accepted by Chung Piaw Teo, optimization. Funding: Financial support from the Oracle Corporation [External Research Office grant] and the National Science Foundation [Grant CMMI-1162034] is gratefully acknowledged.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助yanxin采纳,获得10
1秒前
易子发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
wssf756完成签到,获得积分10
1秒前
科研菜鸟发布了新的文献求助10
2秒前
110完成签到,获得积分10
2秒前
元气水牛完成签到 ,获得积分10
2秒前
赖晨靓完成签到 ,获得积分10
2秒前
Kan完成签到 ,获得积分10
2秒前
2秒前
斯文败类应助傲娇时光采纳,获得10
2秒前
无辜丹翠发布了新的文献求助10
3秒前
kun完成签到,获得积分10
3秒前
3秒前
3秒前
lizh187完成签到,获得积分10
3秒前
所所应助sweat采纳,获得10
4秒前
ling发布了新的文献求助10
4秒前
Todo完成签到 ,获得积分10
4秒前
野狼干完成签到,获得积分20
5秒前
Azhou完成签到,获得积分10
5秒前
6秒前
zjh完成签到,获得积分10
6秒前
6秒前
敏感的惜文完成签到,获得积分10
6秒前
6秒前
kyan发布了新的文献求助10
6秒前
汉堡包应助123采纳,获得10
7秒前
鳗鱼不尤完成签到,获得积分10
7秒前
wssf756发布了新的文献求助10
7秒前
wills应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
蓝天应助科研通管家采纳,获得30
7秒前
SciGPT应助科研菜鸟采纳,获得10
7秒前
Cui完成签到,获得积分10
7秒前
欢喜平凡完成签到,获得积分10
7秒前
蓝天应助科研通管家采纳,获得10
7秒前
任小萱发布了新的文献求助10
7秒前
打打应助科研通管家采纳,获得10
7秒前
yang完成签到,获得积分20
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006