Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study

医学 肺癌 队列 一致性 内科学 统计的 前瞻性队列研究 人口 队列研究 肿瘤科 统计 数学 环境卫生
作者
David C. Muller,Mattias Johansson,Paul Brennan
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:35 (8): 861-869 被引量:113
标识
DOI:10.1200/jco.2016.69.2467
摘要

Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 −13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中午饭完成签到,获得积分10
1秒前
spenley发布了新的文献求助10
1秒前
Summer夏天完成签到,获得积分10
1秒前
2秒前
yulian发布了新的文献求助10
2秒前
luo完成签到 ,获得积分10
2秒前
是小曾啊完成签到 ,获得积分10
3秒前
orixero应助不晚采纳,获得10
3秒前
贺兰鸵鸟完成签到,获得积分10
4秒前
wangyu完成签到,获得积分10
4秒前
4秒前
feilong完成签到,获得积分10
5秒前
云朗完成签到,获得积分10
5秒前
6秒前
6秒前
科目三应助铜豌豆采纳,获得10
6秒前
温水煮青蛙完成签到 ,获得积分0
7秒前
那种完成签到,获得积分10
7秒前
开放灭绝完成签到,获得积分10
7秒前
wwe完成签到,获得积分10
7秒前
MintCoffeeCat发布了新的文献求助10
7秒前
Calvin完成签到,获得积分10
8秒前
稻草完成签到,获得积分10
8秒前
清秀藏今发布了新的文献求助10
8秒前
想瘦的海豹完成签到,获得积分10
8秒前
9秒前
婉莹完成签到 ,获得积分0
9秒前
十个勤天完成签到,获得积分10
9秒前
back you up应助33256采纳,获得20
9秒前
YYY完成签到,获得积分10
10秒前
虚幻靖易完成签到,获得积分10
11秒前
spenley发布了新的文献求助10
11秒前
半岛铁盒应助why采纳,获得10
12秒前
全寻桃发布了新的文献求助10
12秒前
于清绝完成签到 ,获得积分10
12秒前
12秒前
wj发布了新的文献求助10
12秒前
墨旱莲完成签到,获得积分10
12秒前
xiaoqianqian174完成签到,获得积分10
12秒前
超超超完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
《中国建设》英文版对中国国家形象的呈现研究(1952-1965) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3650762
求助须知:如何正确求助?哪些是违规求助? 3215272
关于积分的说明 9705387
捐赠科研通 2923005
什么是DOI,文献DOI怎么找? 1600857
邀请新用户注册赠送积分活动 753733
科研通“疑难数据库(出版商)”最低求助积分说明 732859