Lung Cancer Risk Prediction Model Incorporating Lung Function: Development and Validation in the UK Biobank Prospective Cohort Study

医学 肺癌 队列 一致性 内科学 统计的 前瞻性队列研究 人口 队列研究 肿瘤科 统计 数学 环境卫生
作者
David C. Muller,Mattias Johansson,Paul Brennan
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:35 (8): 861-869 被引量:106
标识
DOI:10.1200/jco.2016.69.2467
摘要

Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 −13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihai1发布了新的文献求助10
2秒前
打打应助shangqinwang采纳,获得10
2秒前
小蘑菇应助爱吃鸭锁骨采纳,获得10
3秒前
艾吉奥33完成签到,获得积分10
4秒前
ovvisong发布了新的文献求助30
4秒前
zwenng发布了新的文献求助10
6秒前
young完成签到,获得积分10
6秒前
才下眉头完成签到,获得积分10
7秒前
9秒前
平淡茈完成签到,获得积分10
11秒前
lvzhigang完成签到 ,获得积分10
13秒前
long发布了新的文献求助30
13秒前
善学以致用应助zwenng采纳,获得10
13秒前
满意的柏柳完成签到,获得积分10
15秒前
16秒前
lihai1完成签到,获得积分10
16秒前
珊小宛完成签到,获得积分10
17秒前
18秒前
zyqy完成签到 ,获得积分10
19秒前
19秒前
好哥哥发布了新的文献求助10
20秒前
20秒前
QY完成签到,获得积分10
22秒前
聖璕完成签到,获得积分10
22秒前
23秒前
无限秋天完成签到 ,获得积分10
23秒前
钮小童发布了新的文献求助10
25秒前
guaguadong发布了新的文献求助10
26秒前
橖子小姐完成签到,获得积分10
28秒前
丘比特应助Mac采纳,获得10
28秒前
Muran完成签到,获得积分0
29秒前
Jalinezz发布了新的文献求助20
29秒前
zwenng发布了新的文献求助10
30秒前
Qing完成签到,获得积分10
30秒前
艺艺完成签到,获得积分10
30秒前
dj发布了新的文献求助10
32秒前
左彦完成签到,获得积分10
32秒前
科研通AI2S应助zyq采纳,获得10
33秒前
四夕完成签到 ,获得积分10
34秒前
ding应助xiw采纳,获得10
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237