A novel model of dam displacement based on panel data

多重共线性 统计的 安全监测 变形监测 流离失所(心理学) 估计员 回归分析 工程类 数据挖掘 统计 变形(气象学) 计算机科学 数学 地质学 生物技术 海洋学 生物 心理治疗师 心理学
作者
Chenfei Shao,Chongshi Gu,Meng Yang,Yanxin Xu,Huaizhi Su
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:25 (1): e2037-e2037 被引量:80
标识
DOI:10.1002/stc.2037
摘要

Deformation monitoring is the main program in the area of dam safety. Because statistical model is simple and intuitive, it is widely used in dam safety monitoring. However, in dam's displacement statistic model, there is a high degree of linear relationship between influence factors. Due to the influence of multicollinearity, models calculated with traditional methods are not accurate and stable. Besides, because of dam integrity, each part of dam is interrelated and interactive. Currently, single point or multipoints displacement monitoring models cannot accurately reflect the actual dam running state. In this paper, the theory of panel data is introduced to dam deformation analysis. Panel data contain time series data and cross section data, which is able to solve serious multicollinearity problem of traditional regression method. Moreover, all measuring points are classified into several groups according to their similar deformation law. Based on the random-coefficient model of panel data, potential relationship between different measuring points is built. Take 1 hydropower station, for example, to examine that random-coefficient model is able to improve the modeling situation that estimators are not significant and simultaneously provide a stable model, which explores a new approach for the research of dam displacement monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SebastianW完成签到,获得积分10
1秒前
1秒前
酷酷煎饼发布了新的文献求助10
2秒前
雨齐完成签到,获得积分10
2秒前
3秒前
李健应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
Singularity应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
苦行僧完成签到,获得积分10
5秒前
牛牛眉目发布了新的文献求助10
6秒前
7秒前
共享精神应助Yuki酱采纳,获得10
8秒前
今后应助陈希铭采纳,获得10
9秒前
zz发布了新的文献求助10
9秒前
嗯哼哈哈发布了新的文献求助10
10秒前
笑哦完成签到,获得积分10
12秒前
月亮moon完成签到,获得积分10
13秒前
诺颜爱发布了新的文献求助10
16秒前
FDY完成签到,获得积分10
17秒前
TheaGao完成签到 ,获得积分10
19秒前
冯冯完成签到 ,获得积分10
21秒前
传奇3应助XXXXX采纳,获得10
21秒前
yx_cheng应助ll采纳,获得10
25秒前
郭京京完成签到 ,获得积分10
26秒前
OPV完成签到,获得积分0
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388