Panel docking of small-molecule libraries — Prospects to improve efficiency of lead compound discovery

虚拟筛选 对接(动物) 药物发现 生物信息学 计算生物学 小分子 蛋白质-配体对接 化学图书馆 化学空间 仿形(计算机编程) 铅化合物 化学数据库 计算机科学 组合化学 化学 生物 生物信息学 生物化学 医学 体外 操作系统 护理部 基因
作者
Pakornwit Sarnpitak,Prashant Mujumdar,Paul Taylor,Megan Cross,Mark J. Coster,Alain-Dominique Gorse,Mikhail Krasavin,Andreas Hofmann
出处
期刊:Biotechnology Advances [Elsevier]
卷期号:33 (6): 941-947 被引量:19
标识
DOI:10.1016/j.biotechadv.2015.05.006
摘要

Computational docking as a means to prioritise small molecules in drug discovery projects remains a highly popular in silico screening approach. Contemporary docking approaches without experimental parametrisation can reliably differentiate active and inactive chemotypes in a protein binding site, but the absence of a correlation between the score of a predicted binding pose and the biological activity of the molecule presents a clear limitation. Several novel or improved computational approaches have been developed in the recent past to aid in screening and profiling of small-molecule ligands for drug discovery, but also more broadly in developing conceptual relationships between different protein targets by chemical probing. Among those new methodologies is a strategy known as inverse virtual screening, which involves the docking of a compound into different protein structures. In the present article, we review the different computational screening methodologies that employ docking of atomic models, and, by means of a case study, present an approach that expands the inverse virtual screening concept. By computationally screening a reasonably sized library of 1235 compounds against a panel of 48 mostly human kinases, we have been able to identify five groups of putative lead compounds with substantial diversity when compared to each other. One representative of each of the five groups was synthesised, and tested in kinase inhibition assays, yielding two compounds with micro-molar inhibition in five human kinases. This highly economic and cost-effective methodology holds great promise for drug discovery projects, especially in cases where a group of target proteins share high structural similarity in their binding sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
QYZ完成签到 ,获得积分10
1秒前
zpc发布了新的文献求助10
3秒前
3秒前
怜然完成签到 ,获得积分10
3秒前
走走完成签到,获得积分10
4秒前
人生若只如初见给人生若只如初见的求助进行了留言
5秒前
终归完成签到 ,获得积分10
5秒前
梁敏完成签到,获得积分10
6秒前
Nnn完成签到,获得积分10
6秒前
我要毕业发布了新的文献求助10
6秒前
lrrrrrr完成签到,获得积分10
6秒前
bbanshan完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Shengkun完成签到,获得积分10
8秒前
lyncee给lyncee的求助进行了留言
9秒前
鳗鱼梦寒发布了新的文献求助10
9秒前
YLi_746完成签到,获得积分10
11秒前
蜜雪冰城完成签到,获得积分10
12秒前
13秒前
最爱吃火锅完成签到,获得积分10
13秒前
Owen应助倾听采纳,获得10
13秒前
小张呢好完成签到,获得积分10
13秒前
13秒前
yz完成签到,获得积分10
15秒前
Criminology34应助liu采纳,获得10
17秒前
听荷77777完成签到,获得积分10
18秒前
chenxilulu完成签到,获得积分10
18秒前
lllllsy完成签到,获得积分10
18秒前
18秒前
斯文雪青完成签到,获得积分10
18秒前
CodeCraft应助派大星采纳,获得10
19秒前
缥莲发布了新的文献求助10
19秒前
hyw完成签到,获得积分10
20秒前
bksqc完成签到 ,获得积分10
20秒前
xxt完成签到,获得积分10
20秒前
磊少完成签到,获得积分10
21秒前
心灵美的白卉完成签到,获得积分10
22秒前
WXR完成签到,获得积分10
24秒前
xun发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806