Panel docking of small-molecule libraries — Prospects to improve efficiency of lead compound discovery

虚拟筛选 对接(动物) 药物发现 生物信息学 计算生物学 小分子 蛋白质-配体对接 化学图书馆 化学空间 仿形(计算机编程) 铅化合物 化学数据库 计算机科学 组合化学 化学 生物 生物信息学 生物化学 医学 体外 操作系统 护理部 基因
作者
Pakornwit Sarnpitak,Prashant Mujumdar,Paul Taylor,Megan Cross,Mark J. Coster,Alain-Dominique Gorse,Mikhail Krasavin,Andreas Hofmann
出处
期刊:Biotechnology Advances [Elsevier BV]
卷期号:33 (6): 941-947 被引量:19
标识
DOI:10.1016/j.biotechadv.2015.05.006
摘要

Computational docking as a means to prioritise small molecules in drug discovery projects remains a highly popular in silico screening approach. Contemporary docking approaches without experimental parametrisation can reliably differentiate active and inactive chemotypes in a protein binding site, but the absence of a correlation between the score of a predicted binding pose and the biological activity of the molecule presents a clear limitation. Several novel or improved computational approaches have been developed in the recent past to aid in screening and profiling of small-molecule ligands for drug discovery, but also more broadly in developing conceptual relationships between different protein targets by chemical probing. Among those new methodologies is a strategy known as inverse virtual screening, which involves the docking of a compound into different protein structures. In the present article, we review the different computational screening methodologies that employ docking of atomic models, and, by means of a case study, present an approach that expands the inverse virtual screening concept. By computationally screening a reasonably sized library of 1235 compounds against a panel of 48 mostly human kinases, we have been able to identify five groups of putative lead compounds with substantial diversity when compared to each other. One representative of each of the five groups was synthesised, and tested in kinase inhibition assays, yielding two compounds with micro-molar inhibition in five human kinases. This highly economic and cost-effective methodology holds great promise for drug discovery projects, especially in cases where a group of target proteins share high structural similarity in their binding sites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoke完成签到,获得积分10
刚刚
Kim_Hou完成签到,获得积分10
刚刚
aaaaaab完成签到,获得积分10
刚刚
英姑应助健壮慕梅采纳,获得10
1秒前
1秒前
丫丫完成签到,获得积分10
1秒前
fly发布了新的文献求助50
2秒前
像风一样发布了新的文献求助10
2秒前
小金今天自律了吗完成签到,获得积分10
3秒前
彪壮的亦瑶完成签到 ,获得积分10
3秒前
小凯同学发布了新的文献求助10
3秒前
kdjm688完成签到 ,获得积分10
4秒前
隔壁老王完成签到,获得积分10
4秒前
研友_VZG7GZ应助伶俐皮卡丘采纳,获得10
4秒前
4秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
4秒前
4秒前
赘婿应助大方的凌波采纳,获得10
5秒前
7秒前
在水一方应助yan123采纳,获得10
7秒前
Rochester完成签到,获得积分10
7秒前
sdf64发布了新的文献求助10
7秒前
叶博发布了新的文献求助30
7秒前
菲菲公主完成签到,获得积分10
8秒前
含蓄含烟完成签到,获得积分10
8秒前
爱笑孤容完成签到,获得积分10
9秒前
jingjing发布了新的文献求助10
9秒前
9秒前
Candy完成签到,获得积分10
9秒前
芝麻球ii完成签到,获得积分10
9秒前
9秒前
自觉的黑夜完成签到,获得积分10
10秒前
烟花应助lily采纳,获得10
11秒前
魔幻的雨旋关注了科研通微信公众号
11秒前
Grape完成签到,获得积分10
11秒前
zshhay发布了新的文献求助10
12秒前
希望天下0贩的0应助sdf64采纳,获得10
13秒前
小明应助大方弘文采纳,获得10
13秒前
skjt完成签到 ,获得积分10
14秒前
GG发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942