材料科学
吸附
石墨
镉
金属
离子交换
水溶液中的金属离子
人体净化
废水
阳极
吸附
离子
核化学
废物管理
冶金
电极
有机化学
物理化学
化学
工程类
作者
Tuo Zhao,Ying Yao,Meiling Wang,Renjie Chen,Yajuan Yu,Feng Wu,Cunzhong Zhang
标识
DOI:10.1021/acsami.7b07882
摘要
Herein, a novel adsorbent was prepared via grafting MnO2 particles on graphite recovered from spent lithium-ion batteries to treat water contaminated by lead, cadmium, and silver. This is the first study reporting the recovery of spent LIB anode material and its application to heavy-metal-contaminated wastewater treatment. Characterizations using scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transform infrared showed that the adsorbent surface was coated with MnO2 ultrafine particles that served as the sorption mechanism to remove heavy-metal ions. In comparison to the raw artificial graphite (AG) powder, the MnO2-modified AG (MnO2-AG) exhibited a markedly improved removal capacity toward Pb(II), Cd(II), and Ag(I), whose removal rates reached as high as 99.9, 79.7, and 99.8%, respectively. The removal of the heavy metals by MnO2-AG was mainly through the ion exchange of hydroxyl groups. This study provides the possibility of synthesis of an efficient adsorbent by reusing the "waste", such as spent Li-ion batteries. It is an economic and environmentally friendly approach for both heavy-metal-contaminated water treatment and waste recycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI