心磷脂
大肠杆菌
生物
细胞质
运输机
功能(生物学)
生物化学
细胞生物学
效应器
ATP合酶
膜蛋白
作者
Tatyana Romantsov,Karen Gonzalez,Naheda Sahtout,Doreen E. Culham,Chelsea Coumoundouros,Jennifer Garner,Craig H. Kerr,Limei Chang,Raymond J. Turner,Janet M. Wood
摘要
Osmosensing by transporter ProP is modulated by its cardiolipin (CL)-dependent concentration at the poles of Escherichia coli cells. Other contributors to this phenomenon were sought with the BACterial Two-Hybrid System (BACTH). The BACTH-tagged variants T18-ProP and T25-ProP retained ProP function and localization. Their interaction confirmed the ProP homo-dimerization previously established by protein crosslinking. YdhP, YjbJ and ClsA were prominent among the putative ProP interactors identified by the BACTH system. The functions of YdhP and YjbJ are unknown, although YjbJ is an abundant, osmotically induced, soluble protein. ClsA (CL Synthase A) had been shown to determine ProP localization by mediating CL synthesis. Unlike a deletion of clsA, deletion of ydhP or yjbJ had no effect on ProP localization or function. All three proteins were concentrated at the cell poles, but only ClsA localization was CL-dependent. ClsA was shown to be N-terminally processed and membrane-anchored, with dual, cytoplasmic, catalytic domains. Active site amino acid replacements (H224A plus H404A) inactivated ClsA and compromised ProP localization. YdhP and YjbJ may be ClsA effectors, and interactions of YdhP, YjbJ and ClsA with ProP may reflect their colocalization at the cell poles. Targeted CL synthesis may contribute to the polar localization of CL, ClsA and ProP.
科研通智能强力驱动
Strongly Powered by AbleSci AI