已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Strategy for Comprehensive Identification of Acylcarnitines Based on Liquid Chromatography–High-Resolution Mass Spectrometry

化学 质谱法 色谱法 高分辨率 分辨率(逻辑) 代谢组学 鉴定(生物学) 液相色谱-质谱法 人工智能 计算机科学 植物 遥感 生物 地质学
作者
Di Yu,Lina Zhou,Qiuhui Xuan,Lichao Wang,Xinjie Zhao,Xin Lü,Guowang Xu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:90 (9): 5712-5718 被引量:53
标识
DOI:10.1021/acs.analchem.7b05471
摘要

Carnitines play important roles in fatty acid oxidation and branched chain amino acid metabolism. The disturbance of acylcarnitines is associated with occurrence and development of many diseases. Comprehensive acylcarnitine identification can greatly benefit their targeted detection, following disease differential diagnosis and possible mechanism study. In this study, we developed a novel strategy to identify as many acylcarnitines as possible based on liquid chromatography–high-resolution mass spectrometry (LC–HRMS). The layer–layer progressive strategy first integrated the initial full scan MS/data-dependent MS/MS monitoring (ddMS2) acquisition and the following parallel reaction monitoring (PRM) to analyze a pooled biological sample. Also 733 possible acylcarnitines were identified containing characteristic high-resolution MS/MS features. Further, accurate mass, retention rules, and HRMS/MS information were used to define subclasses and predict undetected acylcarnitine homologues in each subclass, leading to more acylcarnitines to our newly constructed database. As a result, 758 acylcarnitines were contained in the database, having exact mass, retention time, and MS/MS information, which is the most comprehensive list of acylcarnitines reported to date. Applying this database, 241, 515, and 222 acylcarnitines were rapidly and reliably annotated in human plasma, human urine, and rat liver tissue. This novel strategy enables large-scale identification of acylcarnitines, and a similar method can also be used for identification of other metabolites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助无奈苡采纳,获得10
1秒前
1秒前
Orange应助swordlee采纳,获得10
4秒前
情怀应助nini采纳,获得30
4秒前
nanshaokuingh发布了新的文献求助10
5秒前
5秒前
6秒前
SciGPT应助Wing采纳,获得10
6秒前
空曲发布了新的文献求助10
6秒前
6秒前
hyaoooo发布了新的文献求助10
8秒前
8秒前
天天快乐应助C胖胖采纳,获得10
9秒前
11秒前
李健应助千里采纳,获得10
12秒前
TY发布了新的文献求助10
13秒前
可爱的函函应助空曲采纳,获得10
13秒前
14秒前
ff完成签到 ,获得积分10
15秒前
15秒前
16秒前
踏实的傲白完成签到 ,获得积分10
17秒前
好名字完成签到 ,获得积分10
18秒前
wualexandra完成签到,获得积分10
18秒前
爱静静应助科研通管家采纳,获得30
19秒前
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
19秒前
爆米花应助liuzengzhang666采纳,获得10
20秒前
脑洞疼应助yingying采纳,获得10
21秒前
22秒前
上弦月应助公西天抒采纳,获得10
22秒前
22秒前
25秒前
nn发布了新的文献求助10
25秒前
千里发布了新的文献求助10
26秒前
Owen应助Ryan采纳,获得10
26秒前
林致倓发布了新的文献求助10
28秒前
28秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555423
求助须知:如何正确求助?哪些是违规求助? 3131069
关于积分的说明 9389939
捐赠科研通 2830532
什么是DOI,文献DOI怎么找? 1556087
邀请新用户注册赠送积分活动 726445
科研通“疑难数据库(出版商)”最低求助积分说明 715750