作者
Carla Tatone,Giovanna Di Emidio,Arcangelo Barbonetti,G Carta,A.M. Luciano,Stefano Falone,Fernanda Amicarelli
摘要
Sirtuins (SIRT1-7) are a family of NAD+-dependent deacetylases that catalyze post-translational modifications of proteins. Together, they respond to metabolic challenges, inflammatory signals or hypoxic/oxidative stress, and are associated with aging and longevity. The role of Sirtuins in the regulation of fertility emerged in 2003 when a defective reproductive phenotype was observed in SIRT1-null mice. Although studies on Sirtuins in reproductive biology have been increasing in the last years, a recent comprehensive update on this issue is still lacking.This review is aimed to provide knowledge on the activation mechanism and cellular role of Sirtuins and to give an update of the rapid development of Sirtuin research in female and male reproduction under physiological and pathological conditions. The final goal is to assess whether strategies aimed to improve Sirtuin expression or activity could have therapeutic potential for infertility associated with polycystic ovarian syndrome (PCOS), endometriosis, diabetes, xenobiotic stress and aging.The MEDLINE database was examined for peer-reviewed original articles. The following keywords were searched: 'Sirtuin', 'ovary', 'oocyte', 'ovarian follicle', 'embryo', 'endometrium', 'sperm' and 'testis'. These keywords were combined with other search phrases relevant to the topic.Our knowledge of Sirtuins in reproductive functions has grown exponentially over the last few years. The majority of the work carried out so far has focused on SIRT1 with a prevalence of studies on female reproduction. Numerous studies have provided evidence that down-regulation of SIRT1 is associated with physiological or pathological reduction of ovarian reserve. SIRT1 has also been shown to regulate proliferation and apoptosis in granulosa cells whereas SIRT3 was found to promote luteinisation. Biochemical modulation of Sirtuin activity has led to discoveries of the roles of SIRT1, SIRT2, SIRT3 and SIRT6 in improving the competence of oocytes grown or matured in vitro in humans and animal models. Recently, SIRT1, SIRT2 and SIRT3 have emerged as protectors of oocyte against postovulatory aging. Transgenic models provide strong evidence that SIRT1 is involved in spermatogenesis by influencing specific functions of male germ cell, Sertoli cells and Leydig cells. When our attention moves to post-fertilization events, maternally derived SIRT3 appears crucial in the protecting early embryos against stress conditions. Finally, increasing SIRT1 activity may have the potential to ameliorate fertility in PCOS, diabetes, endometriosis, xenobiotic stress and aging. Overall, these effects have been ascribed to Sirtuin-mediated regulation of energy homoeostasis, mitochondrial biogenesis, chromatin remodelling and protection against oxidative stress.The present review provides challenges and opportunities to stimulate research and exploit Sirtuin-based signalling as diagnostic tools and potential targets for therapeutic applications in reproductive medicine.