特征向量
单变量
旋转副
反向动力学
计算机科学
运动学
多项式的
奔腾
基质(化学分析)
符号计算
数学
理论计算机科学
算法
域代数上的
数学优化
人工智能
多元统计
机器人
纯数学
并行计算
机器学习
物理
数学分析
经典力学
复合材料
材料科学
量子力学
作者
Dinesh Manocha,John Canny
出处
期刊:IEEE Transactions on Robotics and Automation
[Institute of Electrical and Electronics Engineers]
日期:1994-01-01
卷期号:10 (5): 648-657
被引量:266
摘要
In this paper, we present an algorithm and implementation for efficient inverse kinematics for a general six-revolute (6R) manipulator. When stated mathematically, the problem reduces to solving a system of multivariate equations. We make use of the algebraic properties of the system and the symbolic formulation used for reducing the problem to solving a univariate polynomial. However, the polynomial is expressed as a matrix determinant and its roots are computed by reducing to an eigenvalue problem. The other roots of the multivariate system are obtained by computing eigenvectors and substitution. The algorithm involves symbolic preprocessing, matrix computations and a variety of other numerical techniques. The average running time of the algorithm, for most cases, is 11 milliseconds on an IBM RS/6000 workstation. This approach is applicable to inverse kinematics of all serial manipulators.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI