鼠李糖脂
鼠李糖
化学
大肠杆菌
生物降解
细菌
铜绿假单胞菌
生物修复
色谱法
生物化学
食品科学
有机化学
生物
基因
多糖
遗传学
作者
Qinhong Wang,Xiangdong Fang,Baojun Bai,Xiaolin Liang,Patrick Shuler,William A. Goddard,Yujie Tang
摘要
Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including enhanced oil recovery (EOR), biodegradation, and bioremediation. Rhamnolipid is composed of rhamnose sugar molecule and beta-hydroxyalkanoic acid. The rhamnosyltransferase 1 complex (RhlAB) is the key enzyme responsible for transferring the rhamnose moiety to the beta-hydroxyalkanoic acid moiety to biosynthesize rhamnolipid. Through transposome-mediated chromosome integration, the RhlAB gene was inserted into the chromosome of the Pseudomonas aeruginosa PAO1-rhlA(-) and Escherichia coli BL21 (DE3), neither of which could produce rhamnolipid. After chromosome integration of the RhlAB gene, the constitute strains P. aeruginosa PEER02 and E. coli TnERAB did produce rhamnolipid. The HPLC/MS spectrum showed that the structure of purified rhamnolipid from P. aeruginosa PEER02 was similar to that from other P. aeruginosa strains, but with different percentage for each of the several congeners. The main congener (near 60%) of purified rhamnolipid from E. coli TnERAB was 3-(3-hydroxydecanoyloxy) decanoate (C(10)-C(10)) with mono-rhamnose. The surfactant performance of rhamnolipid was evaluated by measurement of interfacial tension (IFT) and oil recovery via sand-pack flooding tests. As expected, pH and salt concentration of the rhamnolipid solution significantly affected the IFT properties. With just 250 mg/L rhamnolipid (from P. aeruginosa PEER02 with soybean oil as substrate) in citrate-Na(2)HPO(4), pH 5, 2% NaCl, 42% of oil otherwise trapped was recovered from a sand pack. This result suggests rhamnolipid might be considered for EOR applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI