特征向量
福井函数
基质(化学分析)
对角线的
性格(数学)
矩阵微分方程
符号(数学)
二阶导数
数学
计算化学
量子力学
化学
数学分析
物理
几何学
生物化学
电泳剂
色谱法
催化作用
作者
Patrick Bultinck,Dorien Clarisse,Paul W. Ayers,Ramon Carbó‐Dorca
摘要
The Fukui matrix is introduced as the derivative of the one-electron reduced density matrix with respect to a change in the number of electrons under constant external potential. The Fukui matrix extends the Fukui function concept: the diagonal of the Fukui matrix is the Fukui function. Diagonalizing the Fukui matrix gives a set of eigenvectors, the Fukui orbitals, and accompanying eigenvalues. At the level of theory used, there is always one dominant eigenvector, with an eigenvalue equal to 1. The remaining eigenvalues are either zero or come in pairs with eigenvalues of the same magnitude but opposite sign. Analysis of the frontier molecular orbital coefficient in the eigenvector with eigenvalue 1 gives information on the quality of the frontier molecular orbital picture. The occurrence of negative Fukui functions can be easily interpreted in terms of the nodal character of the dominant eigenvector versus the characteristics of the remaining eigenvectors and eigenvalues.
科研通智能强力驱动
Strongly Powered by AbleSci AI