Discriminating Leukemia Cellular Heterogeneity and Screening Metabolite Biomarker Candidates using Label-Free Mass Cytometry

白血病 细胞仪 化学 Jurkat细胞 质量细胞仪 计算生物学 细胞 生物标志物 流式细胞术 代谢物 免疫学 生物化学 生物 表型 T细胞 基因 免疫系统
作者
Huan Yao,Hansen Zhao,Xingyu Pan,Xuejuan Zhao,Jiaxin Feng,Chengdui Yang,Sichun Zhang,Xinrong Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (29): 10282-10291 被引量:14
标识
DOI:10.1021/acs.analchem.1c01746
摘要

Discriminating various leukocyte subsets with specific functions is critical due to their important roles in the development of many diseases. Here, we proposed a general strategy to unravel leukocytes heterogeneity and screen differentiated metabolites as biomarker candidates for leukocyte subtypes using the label-free mass cytometry (CyESI-MS) combined with a homemade data processing workflow. Taking leukemia cells as an example, metabolic fingerprints of single leukemia cells were obtained from 472 HL-60, 416 THP-1, 313 U937, 356 Jurkat, and 366 Ramos cells, with throughput up to 40 cells/min. Five leukemia subtypes were clearly distinguished by unsupervised learning t-SNE analysis of the single-cell metabolic fingerprints. Cell discrimination in the mixed leukemia cell samples was also realized by supervised learning of the single-cell metabolic fingerprints with high recovery and good repetition (98.31 ± 0.24%, −102.35 ± 4.82%). Statistical analysis and metabolite assignment were carried out to screen characteristic metabolites for discrimination and 36 metabolites with significant differences were annotated. Then, differentiated metabolites for pairwise discrimination of five leukemia subtypes were further selected as biomarker candidates. Furthermore, discriminating cultured leukemia cells from human normal leukocytes, separated from fresh human peripheral blood, was performed based on single-cell metabolic fingerprints as well as the proposed biomarker candidates, unveiling the potential of this strategy in clinical research. This work makes efforts to realize high-throughput single-leukocyte metabolic analysis and metabolite-based discrimination of leukocytes. It is expected to be a powerful means for the clinical molecular diagnosis of hematological diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉芮完成签到,获得积分10
1秒前
材1完成签到 ,获得积分10
1秒前
雨恋凡尘完成签到,获得积分10
1秒前
科研通AI2S应助烂好人采纳,获得10
1秒前
fei完成签到,获得积分10
1秒前
1秒前
Vegccc发布了新的文献求助10
2秒前
2秒前
2秒前
情怀应助明天见采纳,获得10
3秒前
bkagyin应助hhhhhhh采纳,获得10
3秒前
鹏1989完成签到,获得积分10
4秒前
爆米花应助光亮的世界采纳,获得10
4秒前
4秒前
完美世界应助贪玩映雁采纳,获得30
4秒前
5秒前
sddq完成签到,获得积分10
5秒前
哎哟很烦完成签到,获得积分10
5秒前
whisper完成签到,获得积分10
6秒前
Cloris完成签到,获得积分10
6秒前
梦断西楼完成签到 ,获得积分10
6秒前
烂好人完成签到,获得积分20
7秒前
DrW1111发布了新的文献求助10
7秒前
kmzzy完成签到 ,获得积分10
8秒前
吴壮完成签到,获得积分10
8秒前
李珂完成签到,获得积分10
8秒前
我是老大应助you采纳,获得30
9秒前
愉快凌晴完成签到,获得积分10
9秒前
zhouleiwang完成签到,获得积分10
9秒前
9秒前
葡萄干发布了新的文献求助10
10秒前
sun完成签到,获得积分10
10秒前
秦磊完成签到,获得积分10
10秒前
哈哈发布了新的文献求助30
11秒前
onfire完成签到,获得积分10
12秒前
xxw完成签到,获得积分10
12秒前
not_lost完成签到,获得积分10
12秒前
13秒前
SciGPT应助危机的续采纳,获得10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792