Self-Attention-Based Deep Learning Network for Regional Influenza Forecasting

计算机科学 机器学习 人工智能 时间序列 数据挖掘 任务(项目管理) 深度学习 可靠性(半导体) 多元统计 数据建模 量子力学 数据库 物理 经济 功率(物理) 管理
作者
Seung‐Won Jung,Jaeuk Moon,Sungwoo Park,Eenjun Hwang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 922-933 被引量:22
标识
DOI:10.1109/jbhi.2021.3093897
摘要

Early prediction of influenza plays an important role in minimizing the damage caused, as it provides the resources and time needed to formulate preventive measures. Compared to traditional mechanistic approach, deep/machine learning-based models have demonstrated excellent forecasting performance by efficiently handling various data such as weather and internet data. However, due to the limited availability and reliability of such data, many forecasting models use only historical occurrence data and formulate the influenza forecasting as a multivariate time-series task. Recently, attention mechanisms have been exploited to deal with this issue by selecting valuable data in the input data and giving them high weights. Particularly, self-attention has shown its potential in various forecasting tasks by utilizing the predictive relationship between objects from the input data describing target objects. Hence, in this study, we propose a forecasting model based on self-attention for regional influenza forecasting, called SAIFlu-Net. The model exploits a long short-term memory network for extracting time-series patterns of each region and the self-attention mechanism to find the similarities between the occurrence patterns. To evaluate its performance, we conducted extensive experiments with existing forecasting models using weekly regional influenza datasets. The results show that the proposed model outperforms other models in terms of root mean square error and Pearson correlation coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
热情的戾发布了新的文献求助10
1秒前
2秒前
Yziii应助神奇的光子采纳,获得10
2秒前
情怀应助bobochi采纳,获得10
2秒前
3秒前
3秒前
bulubulubiu完成签到,获得积分10
3秒前
feizhuliu发布了新的文献求助20
3秒前
3秒前
orixero应助青阳采纳,获得10
3秒前
燕子要先飞完成签到,获得积分10
4秒前
4秒前
5秒前
酷波er应助Stephen采纳,获得10
5秒前
优美电脑完成签到,获得积分10
5秒前
CD发布了新的文献求助30
5秒前
1h1m发布了新的文献求助10
5秒前
吾儿坤发布了新的文献求助30
6秒前
领导范儿应助汤汤公主采纳,获得10
7秒前
8秒前
去有风的地方完成签到,获得积分10
8秒前
8秒前
月夙应助赵赵a采纳,获得20
9秒前
9秒前
薰硝壤应助芝士采纳,获得10
9秒前
9秒前
公司VV发布了新的文献求助10
10秒前
古的古的发布了新的文献求助10
10秒前
勤劳的政桦完成签到,获得积分10
10秒前
风中刺猬发布了新的文献求助10
10秒前
11秒前
11秒前
香蕉觅云应助陶醉的甜瓜采纳,获得10
11秒前
IBMffff应助沈吃俭用采纳,获得10
11秒前
kk完成签到,获得积分10
11秒前
浅疏离完成签到,获得积分10
11秒前
chengqin完成签到 ,获得积分10
11秒前
yw发布了新的文献求助10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144274
求助须知:如何正确求助?哪些是违规求助? 2795879
关于积分的说明 7816861
捐赠科研通 2451946
什么是DOI,文献DOI怎么找? 1304774
科研通“疑难数据库(出版商)”最低求助积分说明 627291
版权声明 601419