Self-Attention-Based Deep Learning Network for Regional Influenza Forecasting

计算机科学 机器学习 人工智能 时间序列 数据挖掘 任务(项目管理) 深度学习 可靠性(半导体) 多元统计 数据建模 量子力学 数据库 物理 经济 功率(物理) 管理
作者
Seungwon Jung,Jaeuk Moon,Sungwoo Park,Eenjun Hwang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (2): 922-933 被引量:23
标识
DOI:10.1109/jbhi.2021.3093897
摘要

Early prediction of influenza plays an important role in minimizing the damage caused, as it provides the resources and time needed to formulate preventive measures. Compared to traditional mechanistic approach, deep/machine learning-based models have demonstrated excellent forecasting performance by efficiently handling various data such as weather and internet data. However, due to the limited availability and reliability of such data, many forecasting models use only historical occurrence data and formulate the influenza forecasting as a multivariate time-series task. Recently, attention mechanisms have been exploited to deal with this issue by selecting valuable data in the input data and giving them high weights. Particularly, self-attention has shown its potential in various forecasting tasks by utilizing the predictive relationship between objects from the input data describing target objects. Hence, in this study, we propose a forecasting model based on self-attention for regional influenza forecasting, called SAIFlu-Net. The model exploits a long short-term memory network for extracting time-series patterns of each region and the self-attention mechanism to find the similarities between the occurrence patterns. To evaluate its performance, we conducted extensive experiments with existing forecasting models using weekly regional influenza datasets. The results show that the proposed model outperforms other models in terms of root mean square error and Pearson correlation coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAF发布了新的文献求助10
刚刚
xunmi123完成签到,获得积分10
4秒前
6秒前
所所应助暴躁的依秋采纳,获得10
7秒前
cyr完成签到,获得积分10
7秒前
8秒前
8秒前
黑猫完成签到,获得积分10
8秒前
852应助钟迪采纳,获得10
8秒前
wzt完成签到,获得积分10
9秒前
Rondab应助大牛采纳,获得30
12秒前
666发布了新的文献求助10
12秒前
材料小白完成签到 ,获得积分10
14秒前
14秒前
16秒前
大个应助全球采纳,获得10
18秒前
科研通AI5应助研友_5Zl9D8采纳,获得10
18秒前
高屋建瓴完成签到,获得积分10
19秒前
19秒前
张自信发布了新的文献求助10
19秒前
FDSDK发布了新的文献求助10
20秒前
20秒前
哈哈Ye完成签到,获得积分10
20秒前
欣慰的盼芙完成签到 ,获得积分10
21秒前
乐观的草莓完成签到,获得积分10
22秒前
谦让谷菱完成签到,获得积分10
23秒前
24秒前
格物致知发布了新的文献求助10
24秒前
24秒前
25秒前
完美世界应助Ivy采纳,获得10
25秒前
25秒前
快乐马发布了新的文献求助10
28秒前
jiaolinya完成签到 ,获得积分10
28秒前
28秒前
yjy完成签到,获得积分10
28秒前
无私绿兰完成签到 ,获得积分10
29秒前
向日葵完成签到 ,获得积分10
30秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324