已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning

肝细胞癌 肝硬化 医学 人工智能 卷积神经网络 队列 放射科 分割 图像分割 计算机科学 模式识别(心理学) 内科学
作者
Rencheng Zheng,Luna Wang,Chengyan Wang,Xuchen Yu,Weibo Chen,Yan Li,Weixia Li,Fuhua Yan,He Wang,Ruokun Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (8): 085014-085014 被引量:17
标识
DOI:10.1088/1361-6560/abf2f8
摘要

Abstract Background and objective. Early detection of hepatocellular carcinoma (HCC) is crucial for clinical management. Current studies have reported large HCC detections using automatic algorithms, but there is a lack of research on automatic detection of small HCCs (sHCCs). This study is to investigate the feasibility of automatic detection of sHCC (≤2 cm) based on pattern matching and deep learning (PM-DL) model. Materials and methods . A retrospective study included 5376 image sets from 56 cirrhosis patients (28 sHCC patients with 32 pathologically confirmed lesions and 28 non-HCC cirrhosis patients) in the training-validation cohort to build and validate the model through five-fold cross-validation. In addition, an external test cohort including 6144 image sets from 64 cirrhosis patients (32 sHCC patients with 38 lesions and 32 non-HCC cirrhosis patients) was applied to further verify the generalization ability of the model. The proposed PM-DL model consisted of three main steps: 3D co-registration and liver segmentation, screening of suspicious lesions on diffusion-weighted imaging images based on pattern matching algorithm, and identification/segmentation of sHCC lesions on dynamic contrast-enhanced images with convolutional neural network. Results. The PM-DL model achieved a sensitivity of 89.74% and a positive predictive value of 85.00% in the external test cohort for per-lesion analysis. No significant difference was observed in volumes ( P = 0.13) and the largest sizes ( P = 0.89) between manually delineated and segmented lesions. The DICE coefficient reached 0.77 ± 0.16. Similar performances were identified in the validation cohort. Moreover, the PM-DL model outperformed Liver Imaging Reporting and Data System (LI-RADS) in sensitivity (probable HCCs: LR-5 or LR-4, P = 0.18; definite HCCs: LR-5, P < 0.001), with a similar high specificity for per-patient analysis. Conclusion . The PM-DL model may be feasible for accurate automatic detection of sHCC in cirrhotic liver.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peanut完成签到 ,获得积分10
刚刚
yanxueyi完成签到 ,获得积分10
刚刚
科研通AI2S应助Wish采纳,获得10
刚刚
宣灵薇完成签到 ,获得积分0
刚刚
兜有米完成签到,获得积分10
2秒前
坚定先生关注了科研通微信公众号
4秒前
兜里没糖了完成签到 ,获得积分10
4秒前
周稅完成签到,获得积分10
5秒前
中西西发布了新的文献求助10
8秒前
史一帆完成签到,获得积分10
12秒前
大模型应助rainsy采纳,获得10
13秒前
14秒前
搜集达人应助闪闪剑通采纳,获得10
14秒前
幻月完成签到,获得积分10
16秒前
吴妙竹hh完成签到 ,获得积分10
16秒前
内向尔安完成签到,获得积分10
16秒前
Watsun完成签到,获得积分10
18秒前
虞诗双发布了新的文献求助10
19秒前
善学以致用应助李斌采纳,获得10
20秒前
丁元英完成签到,获得积分10
29秒前
日川冈坂完成签到 ,获得积分10
29秒前
紧张的书文完成签到 ,获得积分10
30秒前
坦率尔蝶完成签到 ,获得积分10
30秒前
31秒前
脑洞疼应助虞诗双采纳,获得10
31秒前
asaki完成签到,获得积分10
32秒前
绾妤完成签到 ,获得积分10
32秒前
33秒前
汉堡包应助晨夕风采纳,获得10
33秒前
三叔完成签到,获得积分0
34秒前
江上游完成签到 ,获得积分10
34秒前
Watsun发布了新的文献求助30
35秒前
小西完成签到,获得积分10
40秒前
鑫7完成签到,获得积分10
41秒前
Orange应助福医小蟹采纳,获得10
43秒前
cccr02完成签到 ,获得积分10
44秒前
勾勾发布了新的文献求助10
45秒前
逍遥小书生完成签到 ,获得积分10
47秒前
ding应助Watsun采纳,获得30
49秒前
2224270676完成签到,获得积分10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460006
求助须知:如何正确求助?哪些是违规求助? 3054340
关于积分的说明 9041513
捐赠科研通 2743568
什么是DOI,文献DOI怎么找? 1504988
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694845