Electrochemical degradation of Ni-EDTA complexes in electroless plating wastewater using PbO2-Bi electrodes

电化学 电极 材料科学 电解 乙二胺四乙酸 电镀 降级(电信) 电镀(地质) 氧化物 无机化学 核化学 冶金 电解质 化学 螯合作用 纳米技术 物理化学 地质学 电信 图层(电子) 计算机科学 地球物理学
作者
Hongyan Rong,Changyong Zhang,Yuyang Sun,Wu Lei,Boyue Lian,Yuan Wang,Yong Chen,Yong Tu,T. David Waite
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 133230-133230 被引量:29
标识
DOI:10.1016/j.cej.2021.133230
摘要

With the rapid growth of nickel (Ni) electroplating industries, large amounts of Ni-containing wastewater are generated every year. Ni in these wastewaters is generally present as complexes with ligands such as ethylenediaminetetraacetic acid (EDTA) with degradation of these complexes typically a prerequisite for Ni removal. Electrochemical advanced oxidation processes (EAOP) can be used to degrade these Ni-EDTA complexes though development of cost effective, highly catalytic, stable electrodes remains a challenge. In this study, bismuth doped lead oxide (PbO2-Bi) electrodes were prepared via a co-electrodeposition process and used for electrochemical degradation of Ni-EDTA and removal of Ni. The effects of Bi doping ratio and electrodeposition current density on the electrode properties were thoroughly investigated. Results demonstrated that 90% of the Ni-EDTA complexes could be degraded and 30% total organic (TOC) and 66% Ni removed in 2 h using the optimized electrode (2% Bi doped PbO2 electrode prepared at an electrodeposition current density of 45 mA cm−2) at a reasonable energy consumption of 3.6 kWh m−3. Minor deterioration in Ni-EDTA degradation performance (<5%) was observed with minimal lead leakage occurring after 160 h electrolysis. Further investigations revealed that the lifetime of the PbO2-Bi electrode was 2.5 times longer than the pristine PbO2 electrode. The results of this study highlight the potential of EAOP employing PbO2-Bi electrodes as a cost-effective approach for the treatment of Ni-containing wastewaters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助hhh采纳,获得10
刚刚
John发布了新的文献求助10
刚刚
1秒前
上官若男应助活泼的如容采纳,获得10
2秒前
2秒前
踏实志泽完成签到,获得积分10
2秒前
2秒前
cassie发布了新的文献求助10
3秒前
3秒前
xinghui应助三十三天采纳,获得10
3秒前
3秒前
3秒前
吴烦恼发布了新的文献求助10
3秒前
ilihe给August的求助进行了留言
3秒前
ARNAMO完成签到,获得积分10
3秒前
草莓熊发布了新的文献求助10
5秒前
兔子发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
殣覔发布了新的文献求助10
7秒前
8秒前
090发布了新的文献求助10
8秒前
TONONO发布了新的文献求助10
9秒前
善学以致用应助向日葵采纳,获得10
9秒前
优娜发布了新的文献求助10
10秒前
把拼好的饭给你完成签到,获得积分10
10秒前
10秒前
11秒前
丁杰发布了新的文献求助10
11秒前
wmz发布了新的文献求助10
11秒前
12秒前
SciGPT应助宋相甫采纳,获得10
12秒前
椰子发布了新的文献求助10
13秒前
14秒前
14秒前
guandada发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071