Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions

随机森林 计算机科学 分类器(UML) 遥感 训练集 模式识别(心理学) 光谱带 人工智能 数据挖掘 地质学
作者
Kristofer Lasko,Megan Maloney,Sarah J. Becker,A. Griffin,Susan L. Lyon,Sean Griffin
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:13 (22): 4531-4531 被引量:6
标识
DOI:10.3390/rs13224531
摘要

This study presents an automated methodology to generate training data for surface water mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR) resolution without the need for ancillary training data layers. The 20 m method incorporates an ensemble of three spectral indexes with optimal band thresholds, whereas the 10 m method achieves similar results using fewer bands and a single spectral index. A spectrally balanced and randomly generated set of training data based on the index values and optimal thresholds is used to fit machine learning classifiers. Statistical validation compares the 20 m ensemble-only method to the 20 m ensemble method with a random forest classifier. Results show the 20 m ensemble-only method had an overall accuracy of 89.5% (±1.7%), whereas the ensemble method combined with the random forest classifier performed better, with a ~4.8% higher overall accuracy: 20 m method (94.3% (±1.3%)) with optimal spectral index and SWIR thresholds of −0.03 and 800, respectively, and 10 m method (93.4% (±1.5%)) with optimal spectral index and NIR thresholds of −0.01 and 800, respectively. Comparison of other supervised classifiers trained automatically with the framework typically resulted in less than 1% accuracy improvement compared with the random forest, suggesting that training data quality is more important than classifier type. This straightforward framework enables accurate surface water classification across diverse geographies, making it ideal for development into a decision support tool for water resource managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
季节发布了新的文献求助20
1秒前
LX发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
Damtree发布了新的文献求助10
4秒前
4秒前
汉堡包应助着急的大米采纳,获得10
4秒前
Lcccccc完成签到,获得积分10
5秒前
科研通AI5应助茗泠采纳,获得10
5秒前
cc关注了科研通微信公众号
5秒前
慕青应助迪迦奥特曼采纳,获得10
5秒前
田様应助lkc采纳,获得10
5秒前
cheryl发布了新的文献求助10
5秒前
6秒前
lily000完成签到,获得积分10
6秒前
清爽的诗槐完成签到,获得积分20
6秒前
纯真牛排完成签到,获得积分10
6秒前
6秒前
JamesPei应助joysa采纳,获得10
7秒前
顺利毕业发布了新的文献求助10
7秒前
微笑的鱼发布了新的文献求助10
7秒前
浮游应助lc339采纳,获得10
7秒前
完美世界应助xing采纳,获得10
8秒前
8秒前
HJJHJH发布了新的文献求助10
8秒前
清秀寄风发布了新的文献求助10
8秒前
8秒前
温大善人完成签到,获得积分10
8秒前
9秒前
10秒前
完好发布了新的文献求助10
11秒前
joni完成签到,获得积分10
11秒前
Zx_1993应助Arvinyang90采纳,获得10
11秒前
11秒前
12秒前
SYX发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556467
求助须知:如何正确求助?哪些是违规求助? 3984487
关于积分的说明 12335864
捐赠科研通 3654483
什么是DOI,文献DOI怎么找? 2013148
邀请新用户注册赠送积分活动 1048117
科研通“疑难数据库(出版商)”最低求助积分说明 936549