阳极
材料科学
阴极
碲
电解质
电偶阳极
化学工程
锌
电化学
无机化学
冶金
电极
化学
物理化学
工程类
阴极保护
作者
Ze Chen,Chuan Li,Qi Yang,Donghong Wang,Xinliang Li,Zhaodong Huang,Guojin Liang,Ao Chen,Chunyi Zhi
标识
DOI:10.1002/adma.202105426
摘要
Zinc ion batteries (ZIBs), generally established on an excessive metallic Zn anode and aqueous electrolytes, suffer from severe dendrites and gassing issues at Zn side, resulting in poor cycling life. Substituting Zn metal anode with non-Zn ones is a promising strategy for solving these problems, whereas this is still restricted by the limited anode alternatives. Herein, by replacing metal Zn with chalcogen element tellurium (Te), a conversion-type Te-based ZIB is reported that can work in both mild and alkaline electrolytes. As expected, the as-assembled mild Te/MnO2 and alkaline Te/Ni(OH)2 cells deliver remarkable capacities up to 106 and 161 mAh g-1anode+cathode , respectively, with a high utilization of anode (50.1% for the Te/MnO2 and 38.9% for the Te/Ni(OH)2 ), which surpass all ZIBs. Ultralong cycling life (over 75% capacity retention after 5000 cycles) is achieved in the two systems, benefiting from the stable conversion mechanisms (mild: Te to ZnTe2 to ZnTe; alkaline: ZnTe to Te to TeO2 ) with thoroughly eliminated dendrites and gassing. Moreover, high gravimetric energy density of ZIBs is also achieved, which are 176.3 Wh kg-1anode+cathdoe (Te/Ni(OH)2 ) and 81 Wh Kg-1anode+cathode (Te/MnO2 ), respectively. This work sheds light on the development of advanced conversion-type anode for high-performance batteries with superior stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI