亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In-situ measurement of machining part deflection with Digital Image Correlation

机械加工 数字图像相关 残余应力 机械工程 变形(气象学) 偏转(物理) 结构工程 材料科学 工程类 光学 冶金 复合材料 物理
作者
Guillaume Rebergue,Benoît Blaysat,Hélène Chanal,Emmanuel Duc
出处
期刊:Measurement [Elsevier]
卷期号:187: 110301-110301 被引量:13
标识
DOI:10.1016/j.measurement.2021.110301
摘要

In the context of the aeronautics industry, aluminum alloy structural parts are manufactured in several stages, from forming processes and heat treatments to final machining. Some process steps may generate residual stresses. Thus, material removal during machining releases these residual stresses, which induces part deformation. Such deformations can lead to geometric nonconformity of the machined part. It is therefore essential to control this phenomenon. Due to the variability in residual stress distribution in each raw part, the modeling approaches must to be coupled with experimental measurements. This article thus aims to define a reliable experimental technique for measuring in-plane deformation of large aeronautical parts during their machining. The backbone of the technique relies on Digital Image Correlation (DIC), which enables the contactless measurement of part deformation during machining. Moreover, DIC provides a full-field measurement and a direct evaluation of part deformations. This work discusses more specifically problems related to the use of DIC during machining, the latter corresponding to a particularly harsh environment. Indeed, optical systems undergo undesirable movement and metal chips hide areas of the observed part. These unwanted events corrupt the results. In order to control these problems and consistently apply DIC part deformation measurement during machining, specific methods are proposed in this paper. Finally, DIC measurements are performed during the same machining sequence of two parts. The excellent agreement of the two measurements confirms the reliability of the technique. Finally, measurements are discussed, emphasizing the contribution they provide to the machining community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助puzhongjiMiQ采纳,获得10
15秒前
NN应助puzhongjiMiQ采纳,获得10
15秒前
搜集达人应助puzhongjiMiQ采纳,获得10
15秒前
ccm应助puzhongjiMiQ采纳,获得10
15秒前
彭于晏应助puzhongjiMiQ采纳,获得10
16秒前
完美世界应助puzhongjiMiQ采纳,获得10
16秒前
pluto应助puzhongjiMiQ采纳,获得10
16秒前
ccm应助puzhongjiMiQ采纳,获得10
16秒前
wanci应助puzhongjiMiQ采纳,获得10
16秒前
Hello应助puzhongjiMiQ采纳,获得10
16秒前
霡霂完成签到,获得积分10
22秒前
34秒前
孙漪发布了新的文献求助10
39秒前
40秒前
wanci应助孙漪采纳,获得10
47秒前
熬夜波比应助科研通管家采纳,获得10
57秒前
熬夜波比应助科研通管家采纳,获得10
57秒前
57秒前
啊z应助科研通管家采纳,获得10
57秒前
andrele应助科研通管家采纳,获得10
57秒前
Hello应助科研通管家采纳,获得10
57秒前
Lucas应助科研通管家采纳,获得10
57秒前
1分钟前
1分钟前
yimomo发布了新的文献求助10
1分钟前
研友_VZG7GZ应助可爱寻芹采纳,获得10
2分钟前
充电宝应助NEUROVASCULAR采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
李健应助梦幻征途采纳,获得10
2分钟前
SUnnnnn发布了新的文献求助10
2分钟前
啊z应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
andrele应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
汉堡包应助斯文明杰采纳,获得10
2分钟前
3分钟前
斯文明杰发布了新的文献求助10
3分钟前
慕青应助2633148059采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009294
关于积分的说明 15175744
捐赠科研通 4841035
什么是DOI,文献DOI怎么找? 2594849
邀请新用户注册赠送积分活动 1547855
关于科研通互助平台的介绍 1505878