已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Establishment of prediction models for COVID-19 patients in different age groups based on Random Forest algorithm

随机森林 医学 2019年冠状病毒病(COVID-19) 回顾性队列研究 观察研究 流行病学 病历 接收机工作特性 算法 疾病 内科学 机器学习 传染病(医学专业) 数学 计算机科学
作者
Xueling Cui,S Wang,Nan Jiang,Z Li,X Li,Mengdi Jin,Binyao Yang,Ningning Jia,Guorong Hu,Yu Liu,Yan He,Shuai Zhao,Qiong Yu
出处
期刊:QJM: An International Journal of Medicine [Oxford University Press]
卷期号:114 (11): 795-801 被引量:5
标识
DOI:10.1093/qjmed/hcab268
摘要

Summary Background Coronavirus disease 2019 (COVID-19) has rapidly become a global pandemic. Age is an independent factor in death from the disease, and predictive models to stratify patients according to their mortality risk are needed. Aim To compare the laboratory parameters of the younger (≤70) and the elderly (>70) groups, and develop death prediction models for the two groups according to age stratification. Design A retrospective, single-center observational study. Methods This study included 437 hospitalized patients with laboratory-confirmed COVID-19 from Tongji Hospital in Wuhan, China, 2020. Epidemiological information, laboratory data and outcomes were extracted from electronic medical records and compared between elderly patients and younger patients. First, recursive feature elimination (RFE) was used to select the optimal subset. Then, two random forest (RF) algorithms models were built to predict the prognoses of COVID-19 patients and identify the optimal diagnostic predictors for patients’ clinical prognoses. Results Comparisons of the laboratory data of the two age groups revealed many different laboratory indicators. RFE was used to select the optimal subset for analysis, from which 11 variables were screened out for the two groups. The RF algorithm were built to predict the prognoses of COVID-19 patients based on the best subset, and the area under ROC curve (AUC) of the two groups is 0.874 (95% CI: 0.833–0.915) and 0.842 (95% CI: 0.765–0.920). Conclusion Two prediction models for COVID-19 were developed in the patients with COVID-19 based on random forest algorithm, which provides a simple tool for the early prediction of COVID-19 mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力的念烟完成签到 ,获得积分10
刚刚
4秒前
su发布了新的文献求助10
9秒前
xu完成签到 ,获得积分10
11秒前
shadow完成签到 ,获得积分10
17秒前
liu完成签到,获得积分10
19秒前
顾矜应助哭泣的丝采纳,获得10
20秒前
布同完成签到,获得积分10
23秒前
26秒前
jyy完成签到,获得积分10
27秒前
科研通AI2S应助持卿采纳,获得10
27秒前
韩保晨完成签到 ,获得积分10
28秒前
MMay完成签到,获得积分10
29秒前
29秒前
29秒前
Somnus完成签到 ,获得积分10
32秒前
情怀应助周浩宇采纳,获得30
32秒前
MMay发布了新的文献求助10
33秒前
34秒前
even完成签到 ,获得积分10
37秒前
XudongHou发布了新的文献求助10
39秒前
40秒前
bryceeluo完成签到,获得积分10
41秒前
43秒前
你好呀嘻嘻完成签到 ,获得积分10
43秒前
iu完成签到 ,获得积分10
44秒前
qin发布了新的文献求助10
45秒前
周浩宇发布了新的文献求助30
47秒前
Owen应助科研通管家采纳,获得10
51秒前
情怀应助科研通管家采纳,获得10
51秒前
梁朝伟应助科研通管家采纳,获得10
51秒前
Dani完成签到,获得积分10
51秒前
CodeCraft应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
完美世界应助科研通管家采纳,获得10
51秒前
Billy应助科研通管家采纳,获得30
52秒前
星辰大海应助科研通管家采纳,获得10
52秒前
Billy应助科研通管家采纳,获得30
52秒前
52秒前
周浩宇完成签到,获得积分20
56秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946599
关于积分的说明 8530916
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434469
科研通“疑难数据库(出版商)”最低求助积分说明 665328
邀请新用户注册赠送积分活动 650855