Partial Discharge Location Identification using Permutation Entropy based Instantaneous Energy Features

局部放电 熵(时间箭头) 排列(音乐) 计算机科学 算法 能量(信号处理) 数学 人工智能 模式识别(心理学) 物理 工程类 声学 统计 电气工程 电压 量子力学
作者
Suganya Govindarajan,Muthukumar Natarajan,Jorge Alfredo Ardila-Rey,Swaminathan Venkatraman
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-12 被引量:2
标识
DOI:10.1109/tim.2021.3121477
摘要

Localization of partial discharge (PD) is a reliable and necessary technique for early prediction of impending failure in transformer windings. Different PD sources have diverse impacts on insulation, and PDs measured at different locations exhibit unique energy characteristics. An approach based on the energy characteristics of the PD signal is proposed here to locate PD inside the winding. An electrical detection method has been considered with PD pulses measured at the top and bottom of the winding through high-frequency current transformers (HFCTs). To reveal multiscale intrinsic characteristics of the PD signal, authors extracted intrinsic mode function (IMF) using ensemble empirical mode decomposition (EEMD). Next, the instantaneous energy distribution-permutation entropy (PE-IED) values of the first several IMFs were calculated to capture the energy of the PD. Then, dimensionality reduction was ensured by the fast principal component analysis that uses the fixed-point algorithm method. Finally, adaptive density-based clustering using the nearest neighbor graph (ADBSCAN-NNG) approach is proposed to identify the local high-density energy components. The proposed method is verified using the winding of a vacuum cast coil transformer and the localization results reveal the feasibility of the proposed method in locating PDs over existing localization algorithms. The reduced complexity of the proposed algorithm ensures the accurate onsite PD localization in transformer windings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁小破完成签到,获得积分10
1秒前
1秒前
远荒发布了新的文献求助10
2秒前
亮仔完成签到,获得积分10
3秒前
玄武岩发布了新的文献求助10
4秒前
4秒前
坦率一一发布了新的文献求助10
4秒前
4秒前
4秒前
零源完成签到,获得积分10
4秒前
planalto完成签到,获得积分10
5秒前
hh发布了新的文献求助10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
阿司匹林发布了新的文献求助10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
NexusExplorer应助ycliu采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
7秒前
sleep应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
qing发布了新的文献求助10
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
xzzt完成签到 ,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
浮游应助府中园马采纳,获得10
7秒前
sun发布了新的文献求助10
7秒前
春江完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
李爱国应助袁小破采纳,获得10
8秒前
桐桐应助酷炫贞采纳,获得30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513050
求助须知:如何正确求助?哪些是违规求助? 4607382
关于积分的说明 14504952
捐赠科研通 4542911
什么是DOI,文献DOI怎么找? 2489237
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443307