Human Protein Complex-Based Drug Signatures for Personalized Cancer Medicine

药品 个性化医疗 疾病 药物重新定位 基因签名 计算生物学 基因表达 药物发现 基因 签名(拓扑) 精密医学 生物信息学 医学 生物 遗传学 药理学 病理 几何学 数学
作者
Fei Wang,Yulian Ding,Xiujuan Lei,Bo Liao,Fang‐Xiang Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (11): 4079-4088 被引量:7
标识
DOI:10.1109/jbhi.2021.3120933
摘要

Disease signature-based drug repositioning approaches typically first identify a disease signature from gene expression profiles of disease samples to represent a particular disease. Then such a disease signature is connected with the drug-induced gene expression profiles to find potential drugs for the particular disease. In order to obtain reliable disease signatures, the size of disease samples should be large enough, which is not always a single case in practice, especially for personalized medicine. On the other hand, the sample sizes of drug-induced gene expression profiles are generally large. In this study, we propose a new drug repositioning approach (HDgS), in which the drug signature is first identified from drug-induced gene expression profiles, and then connected to the gene expression profiles of disease samples to find the potential drugs for patients. In order to take the dependencies among genes into account, the human protein complexes (HPC) are used to define the drug signature. The proposed HDgS is applied to the drug-induced gene expression profiles in LINCS and several types of cancer samples. The results indicate that the HPC-based drug signature can effectively find drug candidates for patients and that the proposed HDgS can be applied for personalized medicine with even one patient sample.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mickey完成签到,获得积分10
2秒前
郭义敏完成签到,获得积分0
3秒前
4秒前
melody完成签到,获得积分10
5秒前
单薄半烟完成签到 ,获得积分10
8秒前
9秒前
10秒前
11秒前
12秒前
12秒前
香蕉觅云应助蒋政采纳,获得10
12秒前
kkk发布了新的文献求助10
13秒前
抹茶完成签到 ,获得积分20
13秒前
Fung发布了新的文献求助10
14秒前
16秒前
16秒前
18秒前
kkk完成签到,获得积分10
19秒前
19秒前
20秒前
bkagyin应助LL采纳,获得10
21秒前
lightman完成签到,获得积分10
21秒前
zhang完成签到 ,获得积分10
22秒前
Akim应助XZY采纳,获得10
23秒前
不配.应助鳕鱼堡采纳,获得20
23秒前
24秒前
26秒前
呆萌的兔子完成签到,获得积分10
29秒前
29秒前
DSC发布了新的文献求助10
29秒前
尘飞扬应助lx采纳,获得20
30秒前
FashionBoy应助桂鱼饭采纳,获得10
31秒前
31秒前
31秒前
酷波er应助草莓奶昔采纳,获得10
31秒前
32秒前
爆米花应助楠楠采纳,获得10
33秒前
33秒前
小张一心向上完成签到,获得积分10
33秒前
shain发布了新的文献求助10
35秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268143
求助须知:如何正确求助?哪些是违规求助? 2907623
关于积分的说明 8342612
捐赠科研通 2578054
什么是DOI,文献DOI怎么找? 1401635
科研通“疑难数据库(出版商)”最低求助积分说明 655107
邀请新用户注册赠送积分活动 634186