已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A defect detection system for wire arc additive manufacturing using incremental learning

材料科学 工程制图 工程类 计算机科学 弧(几何) 机械工程
作者
Yuxing Li,Joseph Polden,Zengxi Pan,Junyi Cui,Chunyang Xia,Fengyang He,Haochen Mu,Huijun Li,Lei Wang
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:27: 100291-100291 被引量:60
标识
DOI:10.1016/j.jii.2021.100291
摘要

In more recent times, research on various aspects of the Wire Arc Additive Manufacturing (WAAM) process has been conducted, and efforts into monitoring the WAAM process for defect identification have increased. Rapid and reliable monitoring of the WAAM process is a key development for the technology as a whole, as it will enable components produced by the process to be qualified to relevant standards and hence be deemed fit for use in applications such as those found in the aerospace or naval sectors. Intelligent algorithms provide inbuilt advantages in processing and analysing data, especially for the large data sets generated during the long manufacturing cycles. Interdisciplinary engineering (IDE) furnishes a concept integrating computer science and industrial system manufacturing engineering together to treat large amounts of process monitoring data. In this work, a WAAM process monitoring and defect detection system integrating intelligent algorithms is presented. The system monitors welding arc current and voltage signals produced by the WAAM process and makes use of a support vector machine (SVM) learning method to identify disturbances to the welding signal which indicate the presence of potential defects. The incremental machine learning models developed in this work are trained via statistical feature analysis of the welding signals and a novel quality metric that improves detection rates is also presented. The incremental learning approach provides an efficient means of detecting welding-based defects, as it does not require large quantities of data to be trained to an operational level (addressing a major drawback of other machine learning methods). A case study is presented to validate the developed system, results show that it was able to detect a set of defects with a success rate greater than 90% F1-score. The fourth industrial revolution (Industrial 4.0) [1] is moving towards intelligent manufacturing. The conventional manufacturing skills integrating novel information technologies play significant roles in this unprecedented revolution. Cyber-physical system (CPS), an embranchment of Industrial 4.0, integrates heterogeneous data with real physical systems to improve manufacturing productivity and efficiency. Correspondingly, a complex and advanced manufacturing system is expected in real manufacturing cycles. However, conventional technologies in manufacturing are inadequate for the development of advanced manufacturing systems. Cooperation from other disciplines, especially knowledge from computer science and engineering, is essential. Industrial information integration engineering (IIIE) [2] comprising different disciplines, including computer science and engineering, industrial systems engineering, information systems engineering, provides an accessible method to design an advanced intelligent manufacturing system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助奇奇怪怪采纳,获得10
刚刚
端庄亦巧完成签到 ,获得积分10
1秒前
周杰发布了新的文献求助30
3秒前
无私翎完成签到 ,获得积分10
5秒前
5秒前
善学以致用应助勇往直前采纳,获得10
6秒前
6秒前
G_CURVE发布了新的文献求助10
8秒前
田様应助Guangmou_采纳,获得10
9秒前
勇往直前完成签到,获得积分10
12秒前
oldblack完成签到,获得积分10
12秒前
龙骑士25完成签到 ,获得积分10
12秒前
Jenny完成签到 ,获得积分10
13秒前
15秒前
一一完成签到,获得积分10
17秒前
柚又完成签到 ,获得积分10
17秒前
好吃鱼完成签到 ,获得积分10
18秒前
xxx完成签到 ,获得积分10
18秒前
一只抱枕完成签到,获得积分20
20秒前
勇往直前发布了新的文献求助10
20秒前
21秒前
wrimer完成签到 ,获得积分10
21秒前
科目三应助等待的香魔采纳,获得10
22秒前
Tohka完成签到 ,获得积分10
22秒前
悄悄完成签到 ,获得积分10
23秒前
sss完成签到 ,获得积分10
24秒前
24秒前
淡淡莞完成签到,获得积分10
25秒前
25秒前
27秒前
奥真奈美77完成签到 ,获得积分10
28秒前
xxm发布了新的文献求助10
29秒前
axi完成签到,获得积分10
30秒前
Li应助福建农林太学采纳,获得10
31秒前
情怀应助福建农林太学采纳,获得10
31秒前
希望天下0贩的0应助WJY采纳,获得20
31秒前
Jennie发布了新的文献求助10
32秒前
ccm驳回了田様应助
33秒前
小闵发布了新的文献求助10
34秒前
丁老三完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185452
求助须知:如何正确求助?哪些是违规求助? 4370908
关于积分的说明 13611416
捐赠科研通 4223147
什么是DOI,文献DOI怎么找? 2316194
邀请新用户注册赠送积分活动 1314790
关于科研通互助平台的介绍 1263766