亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A defect detection system for wire arc additive manufacturing using incremental learning

材料科学 工程制图 工程类 计算机科学 弧(几何) 机械工程
作者
Yuxing Li,Joseph Polden,Zengxi Pan,Junyi Cui,Chunyang Xia,Fengyang He,Haochen Mu,Huijun Li,Lei Wang
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:27: 100291-100291 被引量:60
标识
DOI:10.1016/j.jii.2021.100291
摘要

In more recent times, research on various aspects of the Wire Arc Additive Manufacturing (WAAM) process has been conducted, and efforts into monitoring the WAAM process for defect identification have increased. Rapid and reliable monitoring of the WAAM process is a key development for the technology as a whole, as it will enable components produced by the process to be qualified to relevant standards and hence be deemed fit for use in applications such as those found in the aerospace or naval sectors. Intelligent algorithms provide inbuilt advantages in processing and analysing data, especially for the large data sets generated during the long manufacturing cycles. Interdisciplinary engineering (IDE) furnishes a concept integrating computer science and industrial system manufacturing engineering together to treat large amounts of process monitoring data. In this work, a WAAM process monitoring and defect detection system integrating intelligent algorithms is presented. The system monitors welding arc current and voltage signals produced by the WAAM process and makes use of a support vector machine (SVM) learning method to identify disturbances to the welding signal which indicate the presence of potential defects. The incremental machine learning models developed in this work are trained via statistical feature analysis of the welding signals and a novel quality metric that improves detection rates is also presented. The incremental learning approach provides an efficient means of detecting welding-based defects, as it does not require large quantities of data to be trained to an operational level (addressing a major drawback of other machine learning methods). A case study is presented to validate the developed system, results show that it was able to detect a set of defects with a success rate greater than 90% F1-score. The fourth industrial revolution (Industrial 4.0) [1] is moving towards intelligent manufacturing. The conventional manufacturing skills integrating novel information technologies play significant roles in this unprecedented revolution. Cyber-physical system (CPS), an embranchment of Industrial 4.0, integrates heterogeneous data with real physical systems to improve manufacturing productivity and efficiency. Correspondingly, a complex and advanced manufacturing system is expected in real manufacturing cycles. However, conventional technologies in manufacturing are inadequate for the development of advanced manufacturing systems. Cooperation from other disciplines, especially knowledge from computer science and engineering, is essential. Industrial information integration engineering (IIIE) [2] comprising different disciplines, including computer science and engineering, industrial systems engineering, information systems engineering, provides an accessible method to design an advanced intelligent manufacturing system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jitianxing完成签到,获得积分20
7秒前
科目三应助科研通管家采纳,获得10
10秒前
科研通AI5应助jitianxing采纳,获得10
26秒前
沉默白桃完成签到 ,获得积分10
1分钟前
感动清炎完成签到,获得积分10
1分钟前
Ava应助oleskarabach采纳,获得10
1分钟前
3分钟前
领导范儿应助gszy1975采纳,获得10
4分钟前
靓丽的熠彤完成签到,获得积分10
4分钟前
4分钟前
四氧化三铁完成签到,获得积分10
5分钟前
5分钟前
云云发布了新的文献求助10
5分钟前
wuju完成签到,获得积分10
5分钟前
Raunio完成签到,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
Tales完成签到 ,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
7分钟前
武雨珍完成签到,获得积分10
7分钟前
7分钟前
gszy1975发布了新的文献求助10
8分钟前
Jasper应助科研通管家采纳,获得10
8分钟前
FashionBoy应助thchiang采纳,获得10
8分钟前
852应助陈杰采纳,获得10
8分钟前
科研通AI5应助马良采纳,获得10
9分钟前
小米的稻田完成签到 ,获得积分10
9分钟前
9分钟前
马良发布了新的文献求助10
10分钟前
Jasper应助专注的子骞采纳,获得10
10分钟前
10分钟前
10分钟前
10分钟前
DPmmm发布了新的文献求助10
11分钟前
11分钟前
现实的俊驰完成签到 ,获得积分10
11分钟前
Akim应助Frank采纳,获得10
12分钟前
13分钟前
再给我来点抽象的应助Jim采纳,获得10
13分钟前
科研通AI5应助榆果子采纳,获得10
14分钟前
fufufu123完成签到 ,获得积分10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582395
求助须知:如何正确求助?哪些是违规求助? 4000118
关于积分的说明 12382192
捐赠科研通 3675087
什么是DOI,文献DOI怎么找? 2025689
邀请新用户注册赠送积分活动 1059330
科研通“疑难数据库(出版商)”最低求助积分说明 946014