A defect detection system for wire arc additive manufacturing using incremental learning

材料科学 工程制图 工程类 计算机科学 弧(几何) 机械工程
作者
Yuxing Li,Joseph Polden,Zengxi Pan,Junyi Cui,Chunyang Xia,Fengyang He,Haochen Mu,Huijun Li,Lei Wang
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:27: 100291-100291 被引量:60
标识
DOI:10.1016/j.jii.2021.100291
摘要

In more recent times, research on various aspects of the Wire Arc Additive Manufacturing (WAAM) process has been conducted, and efforts into monitoring the WAAM process for defect identification have increased. Rapid and reliable monitoring of the WAAM process is a key development for the technology as a whole, as it will enable components produced by the process to be qualified to relevant standards and hence be deemed fit for use in applications such as those found in the aerospace or naval sectors. Intelligent algorithms provide inbuilt advantages in processing and analysing data, especially for the large data sets generated during the long manufacturing cycles. Interdisciplinary engineering (IDE) furnishes a concept integrating computer science and industrial system manufacturing engineering together to treat large amounts of process monitoring data. In this work, a WAAM process monitoring and defect detection system integrating intelligent algorithms is presented. The system monitors welding arc current and voltage signals produced by the WAAM process and makes use of a support vector machine (SVM) learning method to identify disturbances to the welding signal which indicate the presence of potential defects. The incremental machine learning models developed in this work are trained via statistical feature analysis of the welding signals and a novel quality metric that improves detection rates is also presented. The incremental learning approach provides an efficient means of detecting welding-based defects, as it does not require large quantities of data to be trained to an operational level (addressing a major drawback of other machine learning methods). A case study is presented to validate the developed system, results show that it was able to detect a set of defects with a success rate greater than 90% F1-score. The fourth industrial revolution (Industrial 4.0) [1] is moving towards intelligent manufacturing. The conventional manufacturing skills integrating novel information technologies play significant roles in this unprecedented revolution. Cyber-physical system (CPS), an embranchment of Industrial 4.0, integrates heterogeneous data with real physical systems to improve manufacturing productivity and efficiency. Correspondingly, a complex and advanced manufacturing system is expected in real manufacturing cycles. However, conventional technologies in manufacturing are inadequate for the development of advanced manufacturing systems. Cooperation from other disciplines, especially knowledge from computer science and engineering, is essential. Industrial information integration engineering (IIIE) [2] comprising different disciplines, including computer science and engineering, industrial systems engineering, information systems engineering, provides an accessible method to design an advanced intelligent manufacturing system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Ode发布了新的文献求助10
1秒前
honest完成签到,获得积分10
4秒前
樊书雪完成签到,获得积分10
4秒前
大牛顿完成签到,获得积分10
4秒前
Jonah完成签到,获得积分20
4秒前
晴烟ZYM发布了新的文献求助30
5秒前
milk完成签到 ,获得积分10
5秒前
5秒前
orixero应助彪壮的机器猫采纳,获得50
5秒前
问筠发布了新的文献求助10
6秒前
ding应助1601929058x采纳,获得10
6秒前
6秒前
叶春曼完成签到,获得积分10
6秒前
杨可言完成签到,获得积分10
6秒前
iiiyyy完成签到,获得积分10
6秒前
Ruyii发布了新的文献求助10
7秒前
杜兰特发布了新的文献求助10
7秒前
8秒前
SAXA完成签到,获得积分10
8秒前
9秒前
10秒前
打打应助淡淡听枫采纳,获得10
10秒前
10秒前
Akim应助情殇采纳,获得10
11秒前
小男孩发布了新的文献求助10
11秒前
微风打了烊完成签到,获得积分10
12秒前
水木应助如意板栗采纳,获得10
12秒前
英姑应助玉玉采纳,获得10
12秒前
个性的人英完成签到,获得积分20
13秒前
蒋念寒发布了新的文献求助10
13秒前
眼睛大萃完成签到,获得积分10
13秒前
13秒前
14秒前
李爱国应助Ausna采纳,获得20
14秒前
L77完成签到,获得积分0
14秒前
15秒前
15秒前
月亮和星星完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452