A defect detection system for wire arc additive manufacturing using incremental learning

材料科学 工程制图 工程类 计算机科学 弧(几何) 机械工程
作者
Yuxing Li,Joseph Polden,Zengxi Pan,Junyi Cui,Chunyang Xia,Fengyang He,Haochen Mu,Huijun Li,Lei Wang
出处
期刊:Journal of Industrial Information Integration [Elsevier]
卷期号:27: 100291-100291 被引量:39
标识
DOI:10.1016/j.jii.2021.100291
摘要

In more recent times, research on various aspects of the Wire Arc Additive Manufacturing (WAAM) process has been conducted, and efforts into monitoring the WAAM process for defect identification have increased. Rapid and reliable monitoring of the WAAM process is a key development for the technology as a whole, as it will enable components produced by the process to be qualified to relevant standards and hence be deemed fit for use in applications such as those found in the aerospace or naval sectors. Intelligent algorithms provide inbuilt advantages in processing and analysing data, especially for the large data sets generated during the long manufacturing cycles. Interdisciplinary engineering (IDE) furnishes a concept integrating computer science and industrial system manufacturing engineering together to treat large amounts of process monitoring data. In this work, a WAAM process monitoring and defect detection system integrating intelligent algorithms is presented. The system monitors welding arc current and voltage signals produced by the WAAM process and makes use of a support vector machine (SVM) learning method to identify disturbances to the welding signal which indicate the presence of potential defects. The incremental machine learning models developed in this work are trained via statistical feature analysis of the welding signals and a novel quality metric that improves detection rates is also presented. The incremental learning approach provides an efficient means of detecting welding-based defects, as it does not require large quantities of data to be trained to an operational level (addressing a major drawback of other machine learning methods). A case study is presented to validate the developed system, results show that it was able to detect a set of defects with a success rate greater than 90% F1-score. The fourth industrial revolution (Industrial 4.0) [1] is moving towards intelligent manufacturing. The conventional manufacturing skills integrating novel information technologies play significant roles in this unprecedented revolution. Cyber-physical system (CPS), an embranchment of Industrial 4.0, integrates heterogeneous data with real physical systems to improve manufacturing productivity and efficiency. Correspondingly, a complex and advanced manufacturing system is expected in real manufacturing cycles. However, conventional technologies in manufacturing are inadequate for the development of advanced manufacturing systems. Cooperation from other disciplines, especially knowledge from computer science and engineering, is essential. Industrial information integration engineering (IIIE) [2] comprising different disciplines, including computer science and engineering, industrial systems engineering, information systems engineering, provides an accessible method to design an advanced intelligent manufacturing system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐应助跳跃鸽子采纳,获得10
1秒前
薰硝壤应助无聊的三毒采纳,获得10
1秒前
凉拌折耳根完成签到,获得积分10
2秒前
小张完成签到,获得积分10
2秒前
酷波er应助一一得一采纳,获得10
2秒前
2秒前
1L发布了新的文献求助10
2秒前
3秒前
Eva发布了新的文献求助10
3秒前
古月月发布了新的文献求助10
3秒前
麋鹿发布了新的文献求助10
3秒前
怕黑的蹇完成签到,获得积分10
3秒前
zhzhzh完成签到,获得积分10
4秒前
完美世界应助超级寒香采纳,获得10
5秒前
yujie发布了新的文献求助10
5秒前
hhhh发布了新的文献求助10
6秒前
6秒前
仙人殊恍惚完成签到 ,获得积分10
6秒前
木木木sls完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
赵赵完成签到,获得积分10
8秒前
zengyan完成签到,获得积分10
8秒前
依梦完成签到,获得积分10
8秒前
欣喜雪晴完成签到 ,获得积分10
8秒前
doctorbin完成签到 ,获得积分10
8秒前
8秒前
ppat5012发布了新的文献求助10
8秒前
卡农完成签到,获得积分10
9秒前
刘英俊完成签到,获得积分10
9秒前
科研通AI2S应助1L采纳,获得10
10秒前
11秒前
11秒前
刻苦熊猫应助无聊的三毒采纳,获得10
11秒前
OKAY完成签到,获得积分0
11秒前
12秒前
agrlook完成签到,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386