A hybrid dynamic model for the prediction of molten iron and slag quality indices of a large-scale blast furnace

过程(计算) 高炉 比例(比率) 熔渣(焊接) 工作(物理) 工程类 质量(理念) 磨细高炉矿渣 材料科学 冶金 计算机科学 工艺工程 机械工程 废物管理 哲学 物理 操作系统 认识论 粉煤灰 量子力学
作者
Pourya Azadi,Joschka Winz,Egidio Leo,Rainer Klock,Sebastian Engell
出处
期刊:Computers & Chemical Engineering [Elsevier]
卷期号:156: 107573-107573 被引量:31
标识
DOI:10.1016/j.compchemeng.2021.107573
摘要

The stable, economically optimal, and environmental-friendly operation of blast furnaces is still a challenge. Blast furnaces consume huge amounts of energy and are among the biggest sources of CO2 in the metal industry. The operation of industrial blast furnaces is challenging because of their sheer size, multi-phase and multi-scale physics and chemistry, slow dynamics with response times of 8 hours and more, and the lack of direct measurements of most of the important inner variables. Model-based schemes are prime candidates for providing the missing information and improving the operation. However, only recently, such schemes have been applied successfully, and there is still a lot of room for improvements. The spatial extension, the lack of precise mechanistic knowledge about the chemical and physical phenomena, and the presence of unmeasured disturbances make the application of first-principle models to process operations extremely challenging. In this work, a hybrid dynamic model is developed for the prediction of the hot metal silicon content and the slag basicity in the blast furnace process. These two variables are the key indicators of the internal process conditions, and the ultimate goal of our work is to control them by a model-based scheme. The core relationships between the process variables are imposed by a first-principles-based steady-state model, and a parallel data-based model represents the process dynamics and compensates for the deficiencies of the mechanistic model. Validation results for real plant measurements of a world-scale blast furnace show that the hybrid model is more accurate than the rigorous model and a stand-alone data-based model in long-term predictions of the dynamic behavior of the process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
chen078完成签到,获得积分10
刚刚
雾色之河关注了科研通微信公众号
刚刚
踏雪寻梅完成签到,获得积分10
2秒前
Vicky发布了新的文献求助10
2秒前
Heisenberg应助小刘采纳,获得10
2秒前
3秒前
Epiphany完成签到,获得积分10
4秒前
南烟完成签到,获得积分10
4秒前
深情安青应助小栗采纳,获得10
5秒前
iNk应助PIppin采纳,获得10
6秒前
英姑应助街道办事部采纳,获得10
6秒前
7秒前
10秒前
冷傲向雁完成签到 ,获得积分10
10秒前
123发布了新的文献求助10
10秒前
彭a发布了新的文献求助10
11秒前
Will3978完成签到,获得积分10
11秒前
12秒前
HEROTREE发布了新的文献求助10
13秒前
13秒前
脑洞疼应助zyx采纳,获得10
13秒前
华仔应助初夏采纳,获得10
14秒前
111发布了新的文献求助10
14秒前
14秒前
15秒前
香蕉觅云应助欣慰的盼芙采纳,获得10
16秒前
lzp完成签到,获得积分10
16秒前
newplayer完成签到,获得积分10
16秒前
辛苦打工人完成签到,获得积分10
16秒前
CipherSage应助单纯的思松采纳,获得10
16秒前
本墨完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
七里香发布了新的文献求助10
19秒前
uuup2U发布了新的文献求助10
19秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312815
求助须知:如何正确求助?哪些是违规求助? 2945259
关于积分的说明 8524020
捐赠科研通 2621043
什么是DOI,文献DOI怎么找? 1433283
科研通“疑难数据库(出版商)”最低求助积分说明 664924
邀请新用户注册赠送积分活动 650271