小气候
环境科学
热舒适性
城市热岛
比例(比率)
计算机科学
能源消耗
建筑围护结构
高效能源利用
城市形态
建筑工程
作者
Rui Ma,Tao Wang,Yan Wang,Jiayu Chen
标识
DOI:10.1016/j.scs.2021.103516
摘要
Abstract Building energy simulation is a powerful tool for developing sustainable and low-emission urban built environments. The conventional simulation model relies on the climate conditions of the entire city that are measured by few weather stations. However, due to urban morphologies, natural conditions, and man-made structures, microclimate conditions vary across geographic locations. This results in unrealistic and unreliable simulation outputs and failure to properly support urban sustainability decision-making. To fill this gap, this study proposed a microclimate tuning approach based on the morphological analysis of local buildings and green land. The proposed tuning approach implements a morpho-patch as the analyzing unit to incorporate various morphological conditions for localized microclimate estimation. Extending the urban weather generator model, the inter-building effects are introduced in the urban canopy component computation and a unique microclimate weather conditions for each patch can be computed. To illustrate the proposed model, this study t simulated the energy dynamic of the entire city of Tucson [AZ, USA] using the proposed model. The results suggested that the root mean square temperature differences between using the single weather conditions and the tunned microclimates can be up to 2.49 °C. For one sample patch, this difference in underestimation of cooling energy demand by 6.69 MW•h in June and overestimation of the heating energy demand by 7.85 MW•h in November. Thus, the proposed method provides more accurate and realistic microclimate estimation for large-scale energy dynamic simulation for cities.
科研通智能强力驱动
Strongly Powered by AbleSci AI