Sodiophilic and conductive carbon cloth guides sodium dendrite-free Na metal electrodeposition

过电位 材料科学 成核 电池(电) 化学工程 阳极 复合数 电极 储能 析氧 多物理 纳米技术 复合材料 电化学 化学 热力学 物理 工程类 有限元法 物理化学 功率(物理) 有机化学 量子力学
作者
Haijun Liu,Markus Osenberg,Ling Ni,André Hilger,Libao Chen,Dong Zhou,Kang Dong,Tobias Arlt,Xiayin Yao,Xiaogang Wang,Ingo Manke,Fu Sun
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:61: 61-70 被引量:35
标识
DOI:10.1016/j.jechem.2021.03.004
摘要

Sodium metal battery (SMB) technology is one of the most promising candidates for next-generation rechargeable energy storage systems due to its high theoretical capacity and economical cost-effectiveness. Unfortunately, its practical implementation is hindered by several challenges including short life-span and fast capacity decay, which is closely related to the uncontrollable generation of the sodium dendrites. Herein, a nitrogen and oxygen co-doped three-dimensional carbon cloth with hollow tubular fiber units was constructed as the host material for Na plating ([email protected]) to tackle these challenges. The obtained composite electrode can effectively reduce the nucleation overpotential of Na, guide the homogeneous Na+ flux, increase the kinetics of Na electrodeposition, lower the effective current density and eventually suppress the formation of electrochemically inactive Na dendrites. As a result, batteries built with the [email protected] composites exhibited stable long-term cycling stability. To gain an in-depth and comprehensive understanding of such phenomena, non-destructive and three-dimensional synchrotron X-ray tomography was employed to investigate the cycled batteries. Moreover, the COMSOL Multiphysics simulation was further employed to reveal the Na electrodeposition mechanisms. The current work not only showcases the feasibility of currently proposed sodiophilic 3D [email protected] composite electrode but also provides fundamental insights into the underlying working mechanisms that govern its outstanding electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
慢歌完成签到 ,获得积分10
刚刚
路茄发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
GRDGRDGRD发布了新的文献求助10
3秒前
Wangyixuan完成签到,获得积分10
4秒前
4秒前
silence关注了科研通微信公众号
5秒前
6秒前
zym发布了新的文献求助10
6秒前
大个应助封尘逸动采纳,获得10
7秒前
华仔应助赵小可可可可采纳,获得10
7秒前
7秒前
wowo发布了新的文献求助30
7秒前
huihui发布了新的文献求助10
9秒前
777完成签到,获得积分10
9秒前
日尧发布了新的文献求助10
9秒前
成就的蓝发布了新的文献求助10
9秒前
10秒前
李小佳发布了新的文献求助20
10秒前
打打应助shamroo采纳,获得10
11秒前
EMEE关注了科研通微信公众号
11秒前
11秒前
12秒前
12秒前
13秒前
崽崽完成签到,获得积分10
13秒前
成就初阳发布了新的文献求助10
13秒前
13秒前
14秒前
雀巢咖啡完成签到,获得积分20
14秒前
Hello应助zym采纳,获得10
15秒前
kk完成签到,获得积分10
15秒前
无名老大应助Moonpie采纳,获得50
15秒前
科研通AI2S应助yu采纳,获得10
16秒前
16秒前
GreenDuane完成签到 ,获得积分0
16秒前
yao完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160