The optimization of state of charge and state of health estimation for lithium‐ions battery using combined deep learning and Kalman filter methods

荷电状态 卡尔曼滤波器 健康状况 扩展卡尔曼滤波器 控制理论(社会学) 电压降 电池(电) 等效电路 工程类 锂离子电池 电压 国家(计算机科学) 计算机科学 算法 电气工程 人工智能 物理 功率(物理) 量子力学 控制(管理)
作者
Yu Shi,Shakeel Ahmad,Qing Tong,Tuti Mariana Lim,Zhongbao Wei,Dongxu Ji,Chika Eze,Jiyun Zhao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (7): 11206-11230 被引量:24
标识
DOI:10.1002/er.6601
摘要

An accurate estimate of the battery state of charge and state of health is critical to ensure the lithium-ion battery's efficiency and safety. The equivalent circuit model-based methods and data-driven models show the potential for robust estimation. However, the state of charge and state of health estimation system's performance with a parallel comparison has been rarely investigated. In this study, the performances of state of charge and state of health with equivalent circuit model-based methods and data-driven estimations are analyzed by different aged and capacity batteries through methods including extended Kalman filters, fully connected deep network with drop methods, and the combination (extended Kalman filters—fully connected deep network with drop methods). Besides the battery state of the voltage and current, the relationship between inner resistance, temperature, and capacity are also considered. Finally, a suggested method is promising for online state estimation of battery working at different temperatures and initial working state. The results indicate that the maximum state of charge estimation errors of the fully connected deep network with drop methods is 0.56% for the fully charged battery. Simultaneously, with an uncertain initial state of charge, the extended Kalman filter shows the lowest maximum state of charge estimation errors (1.4%). For the state of health estimation, the optimized method uses extended Kalman filters to do the monitor first; after 5 testing points, if the state of health drops to lower than 0.95, extended Kalman filters—fully connected deep network with drop methods is suggested. And finally, estimation errors for this method decreased from 30% to 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rainna完成签到,获得积分20
1秒前
guoduan发布了新的文献求助10
1秒前
wujiean发布了新的文献求助10
2秒前
卡奇Mikey完成签到,获得积分10
2秒前
FL完成签到 ,获得积分10
3秒前
cyyyyyyyyyy完成签到,获得积分10
3秒前
YM完成签到,获得积分10
3秒前
薯愿完成签到,获得积分10
4秒前
阿源发布了新的文献求助10
4秒前
5秒前
Chimmy完成签到,获得积分10
5秒前
顾矜应助花花采纳,获得10
5秒前
研友_8oBxrZ完成签到,获得积分10
7秒前
xunxun完成签到 ,获得积分10
7秒前
lonely完成签到,获得积分10
8秒前
PengyaoSu发布了新的文献求助10
9秒前
9秒前
爆米花应助cindy1226采纳,获得10
9秒前
10秒前
小雒雒完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
余姓懒完成签到,获得积分10
13秒前
13秒前
14秒前
chen发布了新的文献求助10
14秒前
lotus0311发布了新的文献求助30
16秒前
华仔应助丰富幻悲采纳,获得10
17秒前
云云然完成签到,获得积分10
17秒前
18秒前
所所应助wh雨采纳,获得10
19秒前
19秒前
19秒前
21秒前
ED应助是龙龙呀采纳,获得10
21秒前
22秒前
22秒前
愉快道之完成签到,获得积分10
22秒前
健壮丝袜发布了新的文献求助10
23秒前
jsinm-thyroid发布了新的文献求助10
23秒前
你怎么这么可爱啊完成签到 ,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951189
求助须知:如何正确求助?哪些是违规求助? 3496538
关于积分的说明 11083082
捐赠科研通 3227010
什么是DOI,文献DOI怎么找? 1784166
邀请新用户注册赠送积分活动 868234
科研通“疑难数据库(出版商)”最低求助积分说明 801089