亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The optimization of state of charge and state of health estimation for lithium‐ions battery using combined deep learning and Kalman filter methods

荷电状态 卡尔曼滤波器 健康状况 扩展卡尔曼滤波器 控制理论(社会学) 电压降 电池(电) 等效电路 工程类 锂离子电池 电压 国家(计算机科学) 计算机科学 算法 电气工程 人工智能 物理 功率(物理) 控制(管理) 量子力学
作者
Yu Shi,Shakeel Ahmad,Qing Tong,Tuti Mariana Lim,Zhongbao Wei,Dongxu Ji,Chika Eze,Jiyun Zhao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (7): 11206-11230 被引量:24
标识
DOI:10.1002/er.6601
摘要

An accurate estimate of the battery state of charge and state of health is critical to ensure the lithium-ion battery's efficiency and safety. The equivalent circuit model-based methods and data-driven models show the potential for robust estimation. However, the state of charge and state of health estimation system's performance with a parallel comparison has been rarely investigated. In this study, the performances of state of charge and state of health with equivalent circuit model-based methods and data-driven estimations are analyzed by different aged and capacity batteries through methods including extended Kalman filters, fully connected deep network with drop methods, and the combination (extended Kalman filters—fully connected deep network with drop methods). Besides the battery state of the voltage and current, the relationship between inner resistance, temperature, and capacity are also considered. Finally, a suggested method is promising for online state estimation of battery working at different temperatures and initial working state. The results indicate that the maximum state of charge estimation errors of the fully connected deep network with drop methods is 0.56% for the fully charged battery. Simultaneously, with an uncertain initial state of charge, the extended Kalman filter shows the lowest maximum state of charge estimation errors (1.4%). For the state of health estimation, the optimized method uses extended Kalman filters to do the monitor first; after 5 testing points, if the state of health drops to lower than 0.95, extended Kalman filters—fully connected deep network with drop methods is suggested. And finally, estimation errors for this method decreased from 30% to 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
studi完成签到,获得积分10
2秒前
发C刊的人完成签到 ,获得积分10
7秒前
8秒前
慕青应助studi采纳,获得10
11秒前
13秒前
RONG完成签到 ,获得积分10
15秒前
斯文败类应助dfwm采纳,获得10
21秒前
英姑应助白茶泡泡球采纳,获得10
21秒前
漂亮的寄真完成签到,获得积分10
22秒前
22秒前
27秒前
studi发布了新的文献求助10
29秒前
33秒前
大zeizei发布了新的文献求助10
33秒前
科研通AI6应助谨慎的雨梅采纳,获得30
34秒前
文静的可仁完成签到,获得积分10
37秒前
bobo发布了新的文献求助10
39秒前
康谨完成签到 ,获得积分10
43秒前
潘啊潘完成签到 ,获得积分10
45秒前
香蕉觅云应助sun采纳,获得10
46秒前
爆米花应助haaa采纳,获得10
54秒前
55秒前
研友_VZG7GZ应助studi采纳,获得10
1分钟前
1分钟前
1分钟前
852应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
wxyshare应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
oxs完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
田様应助sun采纳,获得10
1分钟前
今后应助bobo采纳,获得30
1分钟前
Jasper应助白茶泡泡球采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952250
求助须知:如何正确求助?哪些是违规求助? 4215025
关于积分的说明 13110758
捐赠科研通 3996866
什么是DOI,文献DOI怎么找? 2187672
邀请新用户注册赠送积分活动 1202932
关于科研通互助平台的介绍 1115710