The optimization of state of charge and state of health estimation for lithium‐ions battery using combined deep learning and Kalman filter methods

荷电状态 卡尔曼滤波器 健康状况 扩展卡尔曼滤波器 控制理论(社会学) 电压降 电池(电) 等效电路 工程类 锂离子电池 电压 国家(计算机科学) 计算机科学 算法 电气工程 人工智能 物理 功率(物理) 量子力学 控制(管理)
作者
Yu Shi,Shakeel Ahmad,Qing Tong,Tuti Mariana Lim,Zhongbao Wei,Dongxu Ji,Chika Eze,Jiyun Zhao
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (7): 11206-11230 被引量:17
标识
DOI:10.1002/er.6601
摘要

An accurate estimate of the battery state of charge and state of health is critical to ensure the lithium-ion battery's efficiency and safety. The equivalent circuit model-based methods and data-driven models show the potential for robust estimation. However, the state of charge and state of health estimation system's performance with a parallel comparison has been rarely investigated. In this study, the performances of state of charge and state of health with equivalent circuit model-based methods and data-driven estimations are analyzed by different aged and capacity batteries through methods including extended Kalman filters, fully connected deep network with drop methods, and the combination (extended Kalman filters—fully connected deep network with drop methods). Besides the battery state of the voltage and current, the relationship between inner resistance, temperature, and capacity are also considered. Finally, a suggested method is promising for online state estimation of battery working at different temperatures and initial working state. The results indicate that the maximum state of charge estimation errors of the fully connected deep network with drop methods is 0.56% for the fully charged battery. Simultaneously, with an uncertain initial state of charge, the extended Kalman filter shows the lowest maximum state of charge estimation errors (1.4%). For the state of health estimation, the optimized method uses extended Kalman filters to do the monitor first; after 5 testing points, if the state of health drops to lower than 0.95, extended Kalman filters—fully connected deep network with drop methods is suggested. And finally, estimation errors for this method decreased from 30% to 2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
UGO发布了新的文献求助10
刚刚
lh发布了新的文献求助10
刚刚
乐乐应助个性尔槐采纳,获得10
刚刚
希望天下0贩的0应助瑶625采纳,获得10
1秒前
tengli完成签到,获得积分20
1秒前
劲秉应助坚定迎天采纳,获得20
1秒前
桐桐应助杨枝甘露樱桃采纳,获得10
2秒前
搜集达人应助zhuzhu采纳,获得20
2秒前
LiShin发布了新的文献求助10
3秒前
末岛发布了新的文献求助10
3秒前
3秒前
coffee完成签到,获得积分10
4秒前
李来仪发布了新的文献求助10
4秒前
长安完成签到,获得积分10
5秒前
Hao完成签到,获得积分10
5秒前
JamesPei应助王小志采纳,获得10
5秒前
詹密完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
酷波er应助NEMO采纳,获得10
8秒前
8秒前
8秒前
8秒前
情怀应助shirleeyeahe采纳,获得10
8秒前
9秒前
元元应助xzy采纳,获得20
9秒前
泥花完成签到,获得积分10
9秒前
247793325完成签到,获得积分20
9秒前
眼睛大的冰岚完成签到,获得积分10
9秒前
YY完成签到 ,获得积分10
9秒前
10秒前
雨天慢行完成签到,获得积分10
10秒前
韦威风发布了新的文献求助10
10秒前
科目三应助深情的不评采纳,获得10
10秒前
飞快的梦易完成签到,获得积分10
11秒前
Akim应助1b采纳,获得10
11秒前
末岛完成签到,获得积分10
11秒前
sweetbearm应助benben采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794