Approximate Solution of Higher Order Fuzzy Initial Value Problems of Ordinary Differential Equations Using Bezier Curve Representation

数学 应用数学 贝塞尔曲线 数学分析
作者
Sardar G Amen,A. F. Jameel,Abdul Malek Yaakob
出处
期刊:Mathematics and Statistics [Horizon Research Publishing Co., Ltd.]
卷期号:9 (4): 431-438
标识
DOI:10.13189/ms.2021.090403
摘要

The Bezier curve is a parametric curve used in the graphics of a computer and related areas. This curve, connected to the polynomials of Bernstein, is named after the design curves of Renault's cars by Pierre Bézier in the 1960s. There has recently been considerable focus on finding reliable and more effective approximate methods for solving different mathematical problems with differential equations. Fuzzy differential equations (known as FDEs) make extensive use of various scientific analysis and engineering applications. They appear because of the incomplete information from their mathematical models and their parameters under uncertainty. This article discusses the use of Bezier curves for solving elevated order fuzzy initial value problems (FIVPs) in the form of ordinary differential equation. A Bezier curve approach is analyzed and updated with concepts and properties of the fuzzy set theory for solving fuzzy linear problems. The control points on Bezier curve are obtained by minimizing the residual function based on the least square method. Numerical examples involving the second and third order linear FIVPs are presented and compared with the exact solution to show the capability of the method in the form of tables and two dimensional shapes. Such findings show that the proposed method is exceptionally viable and is straightforward to apply.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助景飞丹采纳,获得10
1秒前
HJJHJH发布了新的文献求助20
1秒前
萤火虫完成签到,获得积分10
2秒前
香蕉觅云应助f1mike110采纳,获得10
2秒前
Jovie7完成签到,获得积分10
2秒前
cc发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
7秒前
Koalas举报甜橙求助涉嫌违规
8秒前
9秒前
可爱半凡发布了新的文献求助10
9秒前
爱吃五花肉完成签到,获得积分10
9秒前
陶醉的觅夏完成签到,获得积分10
11秒前
会有那么一天完成签到,获得积分10
11秒前
Lucas应助HJJHJH采纳,获得10
11秒前
12秒前
风中莫英完成签到,获得积分10
12秒前
14秒前
Hexagram发布了新的文献求助10
14秒前
15秒前
小马甲应助火星上的诗兰采纳,获得10
18秒前
可爱半凡完成签到,获得积分10
18秒前
HanFeiZi发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
21秒前
李小乙完成签到 ,获得积分10
22秒前
XY12138发布了新的文献求助10
23秒前
羊羊羊发布了新的文献求助10
24秒前
乐观的问旋完成签到,获得积分20
24秒前
24秒前
量子星尘发布了新的文献求助50
25秒前
santley发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
27秒前
27秒前
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125432
求助须知:如何正确求助?哪些是违规求助? 4329244
关于积分的说明 13490706
捐赠科研通 4164104
什么是DOI,文献DOI怎么找? 2282779
邀请新用户注册赠送积分活动 1283854
关于科研通互助平台的介绍 1223137