Heart Rate Variability-Based Mental Stress Detection Using Deep Learning Approach

计算机科学 心率变异性 人工智能 分类器(UML) 深度学习 机器学习 一般化 心率 医学 数学 数学分析 血压 放射科
作者
Ramyashri B. Ramteke,V. R. Thool
出处
期刊:Advances in intelligent systems and computing 卷期号:: 51-61 被引量:7
标识
DOI:10.1007/978-981-16-2008-9_5
摘要

Ramteke, Ramyashri B. Thool, Vijaya R.Health problems are rising with today’s stressful life, as it promotes cardiac diseases, depression, violence, and may provoke suicide. Hence, it is essential to develop a computer-aided diagnosis system to identify relaxed versus stressed individuals and their correct classification. Heart rate variability (HRV) based on RR interval is a well-proven clinical and diagnostic tool strongly associated with the autonomic nervous system (ANS). In this study, a conventional method was compared with a deep learning-based method. In the Conventional method, features were extracted from various domains, and these features were fed to a classifier to detect stressed states. However, this method uses hand-crafted features, and hence, there is a possibility of missed high potential features that may be responsible for maximizing the classifier’s generalization performance. This work presents a new approach motivated by the long short-term memory network (LSTM) in sequence learning to generate a concrete decision about the signal category. We proposed deep learning-based Inception-LSTM network to improve performance and to reduce computational cost. Two different stress datasets, viz., self-generated stress data and Physionet driver stress data were used to perform the proposed method’s performance analysis. The presented Inception-LSTM architecture outperforms existing literature methods, achieving an accuracy of 93% for self-generated stress data and 97.19% for driver stress data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
橘仔乐发布了新的文献求助10
3秒前
科研通AI2S应助Chao采纳,获得10
3秒前
倔强的大萝卜完成签到,获得积分0
4秒前
JamesPei应助zhenxing采纳,获得10
10秒前
10秒前
鸢尾完成签到,获得积分10
10秒前
张羊羔完成签到,获得积分10
11秒前
ljcznhy完成签到,获得积分10
11秒前
万能图书馆应助Sir.夏季风采纳,获得10
12秒前
HEIKU应助P值有星采纳,获得20
12秒前
传奇3应助zhangxinhui02采纳,获得10
12秒前
12秒前
丘比特应助恰好喜欢采纳,获得10
13秒前
15秒前
善学以致用应助犹豫山河采纳,获得10
17秒前
小海完成签到 ,获得积分10
17秒前
勤劳怜寒发布了新的文献求助20
17秒前
17秒前
24发布了新的文献求助10
18秒前
山丘完成签到,获得积分10
18秒前
wangyu完成签到,获得积分10
19秒前
舒心怀绿完成签到,获得积分10
19秒前
Chao发布了新的文献求助10
19秒前
19秒前
结实的人英完成签到,获得积分10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
Hello应助科研通管家采纳,获得10
19秒前
20秒前
脑洞疼应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
小龙儿完成签到,获得积分10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得20
20秒前
所所应助科研通管家采纳,获得30
20秒前
斯文败类应助科研通管家采纳,获得30
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046