Heart Rate Variability-Based Mental Stress Detection Using Deep Learning Approach

计算机科学 心率变异性 人工智能 分类器(UML) 深度学习 机器学习 一般化 心率 医学 数学 血压 放射科 数学分析
作者
Ramyashri B. Ramteke,V. R. Thool
出处
期刊:Advances in intelligent systems and computing 卷期号:: 51-61 被引量:7
标识
DOI:10.1007/978-981-16-2008-9_5
摘要

Ramteke, Ramyashri B. Thool, Vijaya R.Health problems are rising with today’s stressful life, as it promotes cardiac diseases, depression, violence, and may provoke suicide. Hence, it is essential to develop a computer-aided diagnosis system to identify relaxed versus stressed individuals and their correct classification. Heart rate variability (HRV) based on RR interval is a well-proven clinical and diagnostic tool strongly associated with the autonomic nervous system (ANS). In this study, a conventional method was compared with a deep learning-based method. In the Conventional method, features were extracted from various domains, and these features were fed to a classifier to detect stressed states. However, this method uses hand-crafted features, and hence, there is a possibility of missed high potential features that may be responsible for maximizing the classifier’s generalization performance. This work presents a new approach motivated by the long short-term memory network (LSTM) in sequence learning to generate a concrete decision about the signal category. We proposed deep learning-based Inception-LSTM network to improve performance and to reduce computational cost. Two different stress datasets, viz., self-generated stress data and Physionet driver stress data were used to perform the proposed method’s performance analysis. The presented Inception-LSTM architecture outperforms existing literature methods, achieving an accuracy of 93% for self-generated stress data and 97.19% for driver stress data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫好好完成签到,获得积分10
刚刚
1秒前
hhzz完成签到,获得积分10
1秒前
1秒前
xhemers完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
2秒前
爱静静应助怡然的莫茗采纳,获得10
3秒前
4秒前
科研通AI5应助清秀的以云采纳,获得30
4秒前
李健的粉丝团团长应助xx采纳,获得10
6秒前
大豪子发布了新的文献求助30
6秒前
李繁蕊发布了新的文献求助10
6秒前
10秒前
10秒前
10秒前
10秒前
橘柚完成签到 ,获得积分10
11秒前
zmmmm发布了新的文献求助10
11秒前
领导范儿应助温言采纳,获得10
11秒前
思源应助OvO采纳,获得10
13秒前
迷糊发布了新的文献求助30
14秒前
LY发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
KimJongUn完成签到,获得积分10
15秒前
17秒前
17秒前
zy完成签到,获得积分10
18秒前
开心果子发布了新的文献求助10
18秒前
云痴子完成签到,获得积分10
19秒前
SciGPT应助粥粥采纳,获得10
19秒前
19秒前
19秒前
20秒前
苏源完成签到,获得积分10
20秒前
wu关闭了wu文献求助
20秒前
20秒前
21秒前
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808