Heart Rate Variability-Based Mental Stress Detection Using Deep Learning Approach

计算机科学 心率变异性 人工智能 分类器(UML) 深度学习 机器学习 一般化 心率 医学 数学 血压 放射科 数学分析
作者
Ramyashri B. Ramteke,V. R. Thool
出处
期刊:Advances in intelligent systems and computing 卷期号:: 51-61 被引量:7
标识
DOI:10.1007/978-981-16-2008-9_5
摘要

Ramteke, Ramyashri B. Thool, Vijaya R.Health problems are rising with today’s stressful life, as it promotes cardiac diseases, depression, violence, and may provoke suicide. Hence, it is essential to develop a computer-aided diagnosis system to identify relaxed versus stressed individuals and their correct classification. Heart rate variability (HRV) based on RR interval is a well-proven clinical and diagnostic tool strongly associated with the autonomic nervous system (ANS). In this study, a conventional method was compared with a deep learning-based method. In the Conventional method, features were extracted from various domains, and these features were fed to a classifier to detect stressed states. However, this method uses hand-crafted features, and hence, there is a possibility of missed high potential features that may be responsible for maximizing the classifier’s generalization performance. This work presents a new approach motivated by the long short-term memory network (LSTM) in sequence learning to generate a concrete decision about the signal category. We proposed deep learning-based Inception-LSTM network to improve performance and to reduce computational cost. Two different stress datasets, viz., self-generated stress data and Physionet driver stress data were used to perform the proposed method’s performance analysis. The presented Inception-LSTM architecture outperforms existing literature methods, achieving an accuracy of 93% for self-generated stress data and 97.19% for driver stress data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ran123456应助阿吉采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
望江饮月发布了新的文献求助10
5秒前
ZBY0216完成签到,获得积分10
6秒前
乐观的雨完成签到,获得积分10
6秒前
三物完成签到 ,获得积分10
6秒前
8秒前
wzswzs发布了新的文献求助10
9秒前
彩色的荔枝完成签到 ,获得积分10
9秒前
枯茗完成签到,获得积分10
10秒前
华仔应助南星采纳,获得10
10秒前
百无禁忌应助狂野的山雁采纳,获得10
10秒前
11秒前
孙成成发布了新的文献求助30
12秒前
研友_VZG7GZ应助jerry采纳,获得10
13秒前
东华帝君完成签到,获得积分10
15秒前
wzswzs完成签到,获得积分10
16秒前
16秒前
ooooo发布了新的文献求助10
16秒前
16秒前
dodo发布了新的文献求助10
16秒前
YH应助凯云采纳,获得50
17秒前
乐乐应助Zirong采纳,获得10
17秒前
李尚泽完成签到,获得积分10
19秒前
菓小柒完成签到 ,获得积分10
20秒前
ding应助LX采纳,获得10
20秒前
机智的龙猫完成签到,获得积分10
20秒前
bkagyin应助别偷我增肌粉采纳,获得10
20秒前
NEUROVASCULAR发布了新的文献求助10
21秒前
21秒前
long完成签到 ,获得积分10
23秒前
Gideon完成签到,获得积分10
23秒前
laoli2022完成签到,获得积分10
23秒前
南星完成签到,获得积分10
24秒前
桐桐应助Lydia采纳,获得10
25秒前
碧蓝香水完成签到,获得积分10
25秒前
25秒前
共享精神应助勋xxx采纳,获得10
26秒前
南星发布了新的文献求助10
27秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150