Harmony Loss for Unbalanced Prediction.

和声搜索 计算机科学 人工智能 和声(颜色) 人工神经网络
作者
Yu Fu,Peng Xue,Meirong Ren,Enqing Dong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号: (99): 1-1 被引量:1
标识
DOI:10.1109/jbhi.2021.3094578
摘要

In medical image analysis, in order to reduce the impact of unbalanced data sets on data-driven deep learning models, according to the characteristic that the area under the Precision-Recall curve (AUCPR) is sensitive to each category of samples, a novel Harmony loss function with fast convergence speed and high stability was constructed. Since AUCPR needs to be calculated in discrete domain, in order to ensure the continuous differentiability and gradient existence of the Harmony loss, first, the Logistic function was used to approximate the Logical function in AUCPR. Then, to improve the optimization speed of the Harmony loss during model training, a method of manually setting a certain number of classification thresholds was proposed to further approximate the calculation of AUCPR. After the above two approximate calculation processes, the Harmony loss with stable gradient and high computational efficiency was designed. In the optimization process of the model, since Harmony loss can reconcile recall and precision of each category under different classification thresholds, thereby, it can not only improve the models ability to recognize categories with less samples, but also maintain the stability of the training curve. To comprehensively evaluate the effects of Harmony loss function, we performed experiments on image 3D reconstruction, 2D segmentation, and unbalanced classification tasks. Experimental results showed that the Harmony loss achieved the state-of-the-art results on four unbalanced data sets. Moreover, the Harmony loss can be easily combined with existing loss functions, and is suitable for most common deep learning models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mark33442完成签到,获得积分10
刚刚
1秒前
852应助紫熊采纳,获得50
1秒前
Song完成签到 ,获得积分10
2秒前
司空雨筠完成签到,获得积分10
4秒前
susu发布了新的文献求助10
5秒前
WeiPaiFXZ完成签到 ,获得积分10
8秒前
完美世界应助持卿采纳,获得10
11秒前
susu完成签到,获得积分10
15秒前
leibaozun完成签到 ,获得积分10
16秒前
孙老师完成签到 ,获得积分10
19秒前
宇文非笑完成签到 ,获得积分10
19秒前
rosalieshi应助絮林采纳,获得50
21秒前
rosalieshi应助絮林采纳,获得30
21秒前
rosalieshi应助絮林采纳,获得50
21秒前
komisan完成签到 ,获得积分10
23秒前
许多多同学完成签到,获得积分10
24秒前
小刚完成签到,获得积分10
25秒前
标致小翠完成签到,获得积分10
27秒前
我爱学习完成签到,获得积分10
27秒前
北国雪未消完成签到 ,获得积分10
41秒前
45秒前
47秒前
持卿发布了新的文献求助10
50秒前
yanglian2003发布了新的文献求助10
51秒前
luckyalias完成签到 ,获得积分10
52秒前
HonestLiang完成签到,获得积分10
53秒前
hh完成签到 ,获得积分10
53秒前
木子木子粒完成签到 ,获得积分10
1分钟前
彭于彦祖应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
聪慧的从雪完成签到 ,获得积分10
1分钟前
master-f完成签到 ,获得积分10
1分钟前
一三二五七完成签到 ,获得积分0
1分钟前
滕皓轩发布了新的文献求助10
1分钟前
fogsea完成签到,获得积分0
1分钟前
深情安青应助背后西装采纳,获得20
1分钟前
卞卞完成签到,获得积分10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268802
求助须知:如何正确求助?哪些是违规求助? 2908247
关于积分的说明 8345093
捐赠科研通 2578624
什么是DOI,文献DOI怎么找? 1402210
科研通“疑难数据库(出版商)”最低求助积分说明 655381
邀请新用户注册赠送积分活动 634497