Incorporating the hybrid deformable model for improving the performance of abdominal CT segmentation via multi-scale feature fusion network

人工智能 计算机科学 仿射变换 分割 卷积神经网络 图像配准 体素 刚性变换 薄板样条 地标 模式识别(心理学) 计算机视觉 Sørensen–骰子系数 稳健性(进化) 图像分割 图像(数学) 样条插值 数学 基因 生物化学 化学 纯数学 双线性插值
作者
Xiaokun Liang,Na Li,Zhicheng Zhang,Jing Xiong,Shoujun Zhou,Yaoqin Xie
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102156-102156 被引量:43
标识
DOI:10.1016/j.media.2021.102156
摘要

Automated multi-organ abdominal Computed Tomography (CT) image segmentation can assist the treatment planning, diagnosis, and improve many clinical workflows’ efficiency. The 3-D Convolutional Neural Network (CNN) recently attained state-of-the-art accuracy, which typically relies on supervised training with many manual annotated data. Many methods used the data augmentation strategy with a rigid or affine spatial transformation to alleviate the over-fitting problem and improve the network’s robustness. However, the rigid or affine spatial transformation fails to capture the complex voxel-based deformation in the abdomen, filled with many soft organs. We developed a novel Hybrid Deformable Model (HDM), which consists of the inter-and intra-patient deformation for more effective data augmentation to tackle this issue. The inter-patient deformations were extracted from the learning-based deformable registration between different patients, while the intra-patient deformations were formed using the random 3-D Thin-Plate-Spline (TPS) transformation. Incorporating the HDM enabled the network to capture many of the subtle deformations of abdominal organs. To find a better solution and achieve faster convergence for network training, we fused the pre-trained multi-scale features into the a 3-D attention U-Net. We directly compared the segmentation accuracy of the proposed method to the previous techniques on several centers’ datasets via cross-validation. The proposed method achieves the average Dice Similarity Coefficient (DSC) 0.852, which outperformed the other state-of-the-art on multi-organ abdominal CT segmentation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KIKIKI发布了新的文献求助10
刚刚
科研通AI6应助xieji采纳,获得10
1秒前
可爱的函函应助xieji采纳,获得10
1秒前
康谨完成签到 ,获得积分10
1秒前
LQX2141完成签到 ,获得积分10
2秒前
正直惜文发布了新的文献求助30
2秒前
无隅完成签到,获得积分10
3秒前
ll61完成签到,获得积分10
4秒前
橙汁得配曼妥思完成签到 ,获得积分10
4秒前
走走完成签到,获得积分10
5秒前
生动白开水应助当时年少采纳,获得10
6秒前
Hilda007应助当时年少采纳,获得10
6秒前
星渊完成签到,获得积分10
6秒前
mmmmm完成签到,获得积分10
7秒前
LUJL完成签到,获得积分10
9秒前
SilentStorm完成签到,获得积分10
10秒前
小二郎应助多情翠丝采纳,获得10
11秒前
violet完成签到 ,获得积分10
12秒前
善学以致用应助缥缈老九采纳,获得10
12秒前
单纯乘风完成签到 ,获得积分10
13秒前
ZXQ完成签到,获得积分10
13秒前
Ei应助KIKIKI采纳,获得10
13秒前
悦耳的大炮完成签到,获得积分10
15秒前
Orange应助YUMMY采纳,获得10
16秒前
DarrenVan完成签到,获得积分10
16秒前
yejian完成签到,获得积分10
16秒前
枯藤老柳树完成签到,获得积分10
16秒前
fddd完成签到,获得积分10
16秒前
17秒前
17秒前
什玖发布了新的文献求助10
19秒前
Linnea-Xu完成签到,获得积分10
19秒前
19秒前
文静的谷菱完成签到,获得积分10
20秒前
四斤瓜完成签到 ,获得积分10
21秒前
王迪发布了新的文献求助10
22秒前
马里奥完成签到,获得积分10
22秒前
多情翠丝发布了新的文献求助10
24秒前
梅赛德斯奔驰完成签到,获得积分10
24秒前
缥缈老九发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294410
求助须知:如何正确求助?哪些是违规求助? 4444291
关于积分的说明 13832801
捐赠科研通 4328369
什么是DOI,文献DOI怎么找? 2376098
邀请新用户注册赠送积分活动 1371421
关于科研通互助平台的介绍 1336611