Incorporating the hybrid deformable model for improving the performance of abdominal CT segmentation via multi-scale feature fusion network

人工智能 计算机科学 仿射变换 分割 卷积神经网络 图像配准 体素 刚性变换 薄板样条 地标 模式识别(心理学) 计算机视觉 Sørensen–骰子系数 稳健性(进化) 图像分割 图像(数学) 样条插值 数学 基因 生物化学 化学 纯数学 双线性插值
作者
Xiaokun Liang,Na Li,Zhicheng Zhang,Jing Xiong,S. Kevin Zhou,Yaoqin Xie
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102156-102156 被引量:31
标识
DOI:10.1016/j.media.2021.102156
摘要

Automated multi-organ abdominal Computed Tomography (CT) image segmentation can assist the treatment planning, diagnosis, and improve many clinical workflows’ efficiency. The 3-D Convolutional Neural Network (CNN) recently attained state-of-the-art accuracy, which typically relies on supervised training with many manual annotated data. Many methods used the data augmentation strategy with a rigid or affine spatial transformation to alleviate the over-fitting problem and improve the network’s robustness. However, the rigid or affine spatial transformation fails to capture the complex voxel-based deformation in the abdomen, filled with many soft organs. We developed a novel Hybrid Deformable Model (HDM), which consists of the inter-and intra-patient deformation for more effective data augmentation to tackle this issue. The inter-patient deformations were extracted from the learning-based deformable registration between different patients, while the intra-patient deformations were formed using the random 3-D Thin-Plate-Spline (TPS) transformation. Incorporating the HDM enabled the network to capture many of the subtle deformations of abdominal organs. To find a better solution and achieve faster convergence for network training, we fused the pre-trained multi-scale features into the a 3-D attention U-Net. We directly compared the segmentation accuracy of the proposed method to the previous techniques on several centers’ datasets via cross-validation. The proposed method achieves the average Dice Similarity Coefficient (DSC) 0.852, which outperformed the other state-of-the-art on multi-organ abdominal CT segmentation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助老迟到的书雁采纳,获得10
1秒前
orixero应助小二采纳,获得10
1秒前
2秒前
2秒前
simple完成签到,获得积分10
2秒前
caoyy发布了新的文献求助10
2秒前
赵小可可可可完成签到,获得积分10
4秒前
小萌发布了新的文献求助10
5秒前
weiv发布了新的文献求助10
5秒前
海科科发布了新的文献求助10
6秒前
陌上花完成签到,获得积分10
6秒前
我是站长才怪应助微笑襄采纳,获得10
7秒前
caoyy完成签到,获得积分10
8秒前
JamesPei应助独特亦旋采纳,获得10
9秒前
10秒前
10秒前
科目三应助Jenny采纳,获得50
12秒前
gry发布了新的文献求助10
13秒前
Hh发布了新的文献求助10
15秒前
Jzhang应助daniel采纳,获得10
15秒前
15秒前
夏夏发布了新的文献求助10
15秒前
jiesenya完成签到,获得积分10
17秒前
今后应助smile采纳,获得10
17秒前
万能图书馆应助wuzhizhiya采纳,获得10
18秒前
科研通AI5应助清新的静枫采纳,获得10
18秒前
applelpypies完成签到 ,获得积分10
18秒前
内向一笑完成签到 ,获得积分10
19秒前
ll完成签到,获得积分20
19秒前
19秒前
444完成签到,获得积分10
20秒前
gry完成签到,获得积分10
22秒前
22秒前
科研通AI5应助夏夏采纳,获得10
23秒前
LU完成签到 ,获得积分10
23秒前
zky0216发布了新的文献求助10
24秒前
Kin_L完成签到,获得积分10
24秒前
25秒前
一一发布了新的文献求助10
25秒前
丙队长发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824