Inferring management and predicting sub-field scale C dynamics in UK grasslands using biogeochemical modelling and satellite-derived leaf area data

生物地球化学循环 环境科学 比例(比率) 卫星 遥感 领域(数学) 气象学 大气科学 地理 生态学 地质学 地图学 生物 物理 数学 纯数学 天文
作者
Vasileios Myrgiotis,Paul Harris,Andrew Revill,Hadewij Sint,Mathew Williams
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:307: 108466-108466 被引量:14
标识
DOI:10.1016/j.agrformet.2021.108466
摘要

• Earth observation data and process modelling are combined to estimate grassland C dynamics. • The model-data fusion algorithm infers grazing and cutting from leaf area index data. • The algorithm was implemented at 3 managed grasslands in England for 2015–2018. • 87.5% of harvests were identified and 83% of measured yields were simulated accurately. • The in-situ estimated and simulated grazed biomass had a r = 0.8 . Grasslands, natural and managed, cover a large part of the Earth’s surface and play an important role in the global carbon (C) cycle. Human management strongly affects grassland C budgets through grass cutting and removal, varied grazing intensities, and organic matter additions. Thus managed grassland C cycles are highly heterogeneous and challenging to quantify. In this study, we combine a process-based model of the grassland C cycle, validated against field data on C fluxes and pools, with satellite-derived data (Proba-V and Sentinel-2) on leaf area index (LAI) in order to quantify field-scale grassland productivity and C dynamics under climatic and management conditions typical of northwest Europe. Input data on the weekly vegetation canopy anomaly (estimated from Proba-V LAI) and meteorology are used to drive the grassland C model (DALEC-Grass) that is integrated into a Bayesian model-data fusion (MDF) framework. The novelty of the MDF algorithm is that it infers weekly livestock grazing and grass cutting events based on expected canopy growth estimated by the model, and constrained by LAI observations (estimated from Sentinel-2). The MDF approach also resolves observational, parametric, and input uncertainties on C cycling estimates. We analysed four years (2015–2018) of C dynamics at three variably-managed fields of the Rothamsted Research North Wyke Farm Platform (UK). Compared against independent field data, the MDF was able to (i) identify 87.5% of the harvest events that occurred, (ii) accurately predict the annual yields in 83% of the identified harvest years and (iii) reproduce the observed grazing intensity in each field ( r = 0.8 , overlap = 90%). We demonstrate that the fusion of process modelling with earth observations is an effective method for monitoring biomass removals and quantifying management impacts on field-scale C balance, without the need for frequent and laborious ground measurements. This approach can support the delivery of more robust national greenhouse gas (GHG) accounting that takes account of grassland vegetation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zjjcrystal发布了新的文献求助10
1秒前
1秒前
2秒前
Godlove发布了新的文献求助10
2秒前
3秒前
DY发布了新的文献求助10
4秒前
钢琴海豹完成签到,获得积分10
4秒前
4秒前
Snowychen完成签到,获得积分10
5秒前
5秒前
劲秉应助端庄的萝采纳,获得20
6秒前
高兴星完成签到,获得积分10
6秒前
传奇3应助Godlove采纳,获得10
6秒前
6秒前
windli发布了新的文献求助10
6秒前
WANG完成签到,获得积分20
7秒前
Lucas应助一颗椰子糖耶采纳,获得10
8秒前
情怀应助时尚战斗机采纳,获得10
9秒前
ytli发布了新的文献求助20
9秒前
lllkkk发布了新的文献求助10
10秒前
欧小嘢发布了新的文献求助10
10秒前
sundial发布了新的文献求助10
11秒前
Godlove完成签到,获得积分10
13秒前
百里新梅发布了新的文献求助10
13秒前
lichaoyes完成签到,获得积分10
14秒前
Jasper应助平常的玲采纳,获得10
15秒前
老迟到的羊完成签到 ,获得积分10
15秒前
pony发布了新的文献求助30
16秒前
zjjcrystal完成签到,获得积分20
16秒前
香蕉觅云应助丽虹采纳,获得10
17秒前
科研通AI2S应助lllkkk采纳,获得10
18秒前
科研通AI5应助小石头采纳,获得10
18秒前
18秒前
西柚柠檬完成签到 ,获得积分10
19秒前
科研通AI5应助Hresearch采纳,获得10
19秒前
20秒前
嘟噜完成签到 ,获得积分10
22秒前
百里新梅完成签到,获得积分10
22秒前
23秒前
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735644
求助须知:如何正确求助?哪些是违规求助? 3279426
关于积分的说明 10015198
捐赠科研通 2996127
什么是DOI,文献DOI怎么找? 1643895
邀请新用户注册赠送积分活动 781551
科研通“疑难数据库(出版商)”最低求助积分说明 749423