A hybrid recommender system for recommending smartphones to prospective customers

推荐系统 计算机科学 万维网 情报检索
作者
Pratik K. Biswas,Songlin Liu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:208: 118058-118058 被引量:32
标识
DOI:10.1016/j.eswa.2022.118058
摘要

Recommender Systems are a subclass of machine learning systems that employ sophisticated information filtering strategies to reduce the search time and suggest the most relevant items to any particular user. Hybrid recommender systems combine multiple recommendation strategies in different ways to benefit from their complementary advantages. Some hybrid recommender systems have combined collaborative filtering and content-based approaches to build systems that are more robust. In this paper, we propose a hybrid recommender system, which combines Alternating Least Squares (ALS) based collaborative filtering with deep learning to enhance recommendation performance as well as overcome the limitations associated with the collaborative filtering approach, especially concerning its cold start problem. In essence, we use the outputs from ALS (collaborative filtering) to influence the recommendations from a Deep Neural Network (DNN), which combines characteristic, contextual, structural and sequential information, in a big data processing framework. We have conducted several experiments in testing the efficacy of the proposed hybrid architecture in recommending smartphones to prospective customers and compared its performance with other open-source recommenders. The results have shown that the proposed system has outperformed several existing hybrid recommender systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝西装舞王完成签到,获得积分10
刚刚
科研通AI2S应助跳跃靖采纳,获得10
1秒前
puppy发布了新的文献求助10
1秒前
1秒前
小二郎应助梦鱼采纳,获得10
2秒前
苹果从菡完成签到,获得积分10
3秒前
[刘小婷]完成签到,获得积分10
3秒前
ZX完成签到,获得积分10
3秒前
羽言完成签到,获得积分10
3秒前
世间安得双全法完成签到,获得积分0
4秒前
CD56应助t3t3t3t3采纳,获得20
4秒前
小木虫完成签到,获得积分10
4秒前
4秒前
qifeng完成签到,获得积分10
5秒前
ddly完成签到,获得积分10
6秒前
8秒前
Juniper完成签到 ,获得积分10
8秒前
小章鱼完成签到,获得积分10
9秒前
淡然皮卡丘完成签到,获得积分10
9秒前
HPP完成签到,获得积分10
9秒前
10秒前
天天快乐应助研友_WnqWp8采纳,获得10
10秒前
彭于彦祖应助清脆初晴采纳,获得20
10秒前
徐rl发布了新的文献求助20
10秒前
小明完成签到,获得积分10
11秒前
笑点低的凝阳完成签到,获得积分10
11秒前
苗槐完成签到,获得积分10
11秒前
去看海嘛完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
科研通AI2S应助HaRd采纳,获得10
13秒前
桐桐应助李谢谢采纳,获得10
13秒前
Gleaming完成签到,获得积分10
13秒前
苏远山爱吃西红柿完成签到 ,获得积分10
13秒前
SciGPT应助研友_08oa3n采纳,获得10
14秒前
是小王ya完成签到,获得积分10
16秒前
8R60d8应助高贵花瓣采纳,获得10
16秒前
阳佟半仙完成签到,获得积分10
17秒前
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244942
求助须知:如何正确求助?哪些是违规求助? 2888587
关于积分的说明 8253996
捐赠科研通 2557043
什么是DOI,文献DOI怎么找? 1385639
科研通“疑难数据库(出版商)”最低求助积分说明 650203
邀请新用户注册赠送积分活动 626369