PPDDS: A Privacy-Preserving Disease Diagnosis Scheme Based on the Secure Mahalanobis Distance Evaluation Model

马氏距离 同态加密 计算机科学 云计算 加密 密文 信息隐私 方案(数学) 数据挖掘 外包 服务器 计算机安全 人工智能 计算机网络 数学 法学 数学分析 操作系统 政治学
作者
Mingwu Zhang,Yimeng Zhang,Gang Shen
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:16 (3): 4552-4562 被引量:20
标识
DOI:10.1109/jsyst.2021.3093415
摘要

The development of Big Data and cloud computing has brought great progress to medical diagnosis and clinical services. However, as disease diagnosis technologies usually use lots of clinical medical data, patients’ privacy becomes increasingly important since the clinical results of medical data are much sensitive. In this article, to deal with the privacy preservation issue of patient’s medical data, we propose a privacy-preserving disease diagnosis scheme that is based on the Mahalanobis distance test, in which the role of the system consisting of query user (QU), aided cloud server (ACS), and classification cloud server (CCS) is to jointly calculate and protect the diagnosis data over the sensitive and outsourced medical data. In the diagnosis model, we outsource the clinical diagnosis process to be dealt with by the CCS, and then, the ACS can reduce the computational cost of the user side. We utilize the homomorphic re-encryption scheme to realize a secure computation over the outsourced medical data, and then, employ a secure multiplication (SM) protocol to implement the privacy-preserving Mahalanobis distance to output the disease diagnosis. Concretely, we provide an extended SM algorithm to solve the problem of multiplication of two encrypted data, and a minimum value comparison algorithm over ciphertext for comparing the encrypted Mahalanobis distance. Finally, we give the experimental performance in real data sheets, and the experimental results indicate that our scheme provides a lower computational cost in practical diagnosis services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhh完成签到 ,获得积分10
刚刚
甜味拾荒者完成签到,获得积分10
2秒前
小二郎应助BONBON采纳,获得10
2秒前
3秒前
charllie完成签到 ,获得积分10
3秒前
空禅yew完成签到,获得积分10
4秒前
坚强亦丝应助跳跃采纳,获得10
6秒前
英俊的铭应助cc采纳,获得10
6秒前
huangsan完成签到,获得积分10
6秒前
匹诺曹完成签到,获得积分10
6秒前
7秒前
华仔应助进取拼搏采纳,获得10
7秒前
8秒前
dingdong发布了新的文献求助10
8秒前
you完成签到 ,获得积分10
9秒前
qwf完成签到 ,获得积分10
9秒前
10秒前
万能图书馆应助一一采纳,获得10
10秒前
执着跳跳糖完成签到 ,获得积分10
11秒前
阳yang完成签到,获得积分10
11秒前
牛头人完成签到,获得积分10
11秒前
12秒前
Rrr发布了新的文献求助10
12秒前
13秒前
13秒前
serenity完成签到 ,获得积分10
13秒前
Benliu完成签到,获得积分10
13秒前
csq发布了新的文献求助10
14秒前
15秒前
Hello应助外向的醉易采纳,获得10
15秒前
DWWWDAADAD完成签到,获得积分10
18秒前
科研通AI5应助一天八杯水采纳,获得10
19秒前
杨大仙儿完成签到 ,获得积分10
19秒前
21秒前
坚强的广山应助木头人采纳,获得200
21秒前
嘻哈学习完成签到,获得积分10
21秒前
21秒前
21秒前
ying完成签到,获得积分10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808