Insight into Ion Diffusion Dynamics/Mechanisms and Electronic Structure of Highly Conductive Sodium-Rich Na3+xLaxZr2–xSi2PO12 (0 ≤ x ≤ 0.5) Solid-State Electrolytes

快离子导体 离子电导率 材料科学 离子键合 离子 电解质 化学物理 无机化学 电导率 分析化学(期刊) 物理化学 化学 色谱法 电极 有机化学
作者
Fei Sun,Yuxuan Xiang,Qian Sun,Guiming Zhong,Mohammad Norouzi Banis,Weihan Li,Yulong Liu,Jing Luo,Ruying Li,Riqiang Fu,Tsun‐Kong Sham,Yong Yang,Xuhui Sun,Xueliang Sun
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (11): 13132-13138 被引量:33
标识
DOI:10.1021/acsami.0c21882
摘要

Solid-state electrolytes (SSEs) have attracted considerable attention as an alternative for liquid electrolytes to improve safety and durability. Sodium Super Ionic CONductor (NASICON)-type SSEs, typically Na3Zr2Si2PO12, have shown great promise because of their high ionic conductivity and low thermal expansivity. Doping La into the NASICON structure can further elevate the ionic conductivity by an order of magnitude to several mS/cm. However, the underlying mechanism of ionic transportation enhancement has not yet been fully disclosed. Herein, we fabricate a series of Na3+xLaxZr2–xSi2PO12 (0 ≤ x ≤ 0.5) SSEs. The electronic and local structures of constituent elements are studied via synchrotron-based X-ray absorption spectroscopy, and the ionic dynamics and Na-ion conduction mechanism are investigated by solid-state nuclear magnetic resonance spectroscopy. The results prove that La3+ ions exist in the form of phosphate impurities such as Na3La(PO4)2 instead of occupying the Zr4+ site. As a result, the increased Si/P ratio in the NASICON phase, accompanied by an increase in the sodium ion occupancy, makes a major contribution to the enhancement of ionic conductivity. The spin–lattice relaxation time study confirms the accelerated Na+ motions in the altered NASICON phase. Modifications on the Si/P composition can be a promising strategy to enhance the ionic conductivity of NASICON.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duwang完成签到,获得积分10
1秒前
1秒前
鄙视注册完成签到,获得积分0
1秒前
风华发布了新的文献求助10
1秒前
1秒前
2秒前
Robin发布了新的文献求助10
2秒前
现代半山完成签到 ,获得积分10
2秒前
思源应助888采纳,获得10
3秒前
3秒前
科研通AI6应助康康采纳,获得10
3秒前
Tina完成签到,获得积分10
3秒前
zwx发布了新的文献求助10
3秒前
香菜发布了新的文献求助10
3秒前
12138完成签到,获得积分10
4秒前
听话的炳完成签到,获得积分20
4秒前
4秒前
5秒前
耍酷的婴发布了新的文献求助10
5秒前
科研通AI6应助mochen采纳,获得10
5秒前
5秒前
zhou发布了新的文献求助10
6秒前
搞怪的萃发布了新的文献求助10
7秒前
kopp发布了新的文献求助10
7秒前
Jared应助wuran采纳,获得10
7秒前
8秒前
zeta发布了新的文献求助10
8秒前
9秒前
小张z完成签到,获得积分10
9秒前
青柚子完成签到,获得积分10
9秒前
10秒前
chai发布了新的文献求助10
10秒前
smottom应助清秀语梦采纳,获得10
10秒前
英俊的铭应助信徒采纳,获得10
10秒前
Gaolongzhen发布了新的文献求助10
10秒前
10秒前
10秒前
BareBear应助花怜采纳,获得10
11秒前
柳博超发布了新的文献求助10
11秒前
xi发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320