Automated system of the determination of maxillary sinus morphometric parameters

医学 上颌窦 牙科 口腔正畸科
作者
С. Л. Кабак,G. M. Karapetyan,Yuliya Michailovna Melnichenko,Н. А. Саврасова,Ivan Kosik
出处
期刊:Vestnik otorinolaringologii [Media Sphere Publishing Group]
卷期号:86 (2): 49-49 被引量:5
标识
DOI:10.17116/otorino20218602149
摘要

THE AIM OF THE STUDY Was to compare manual, semi-automatic and automatic methods for determining the maxillary sinus volume using cone beam computed tomography (CBCT). MATERIAL AND METHODS CBCT images from 48 patients (96 maxillary sinuses) with no history of sinus and alveolar bone surgery, who were presented to Minsk medical centers, were used in this study. Neural network training was performed on CBCT scans of 42 patients (84 maxillary sinuses).The height, depth and width of the sinus were measured manually on CBCT scans of 6 patients (12 maxillary sinuses). Maxillary sinus volume (V) was calculated by the formula: V=height´depth´1/3 width. Semi-automatic segmentation was carried out by an expert radiologist. The convolutional neural network technology was applied for maxillary sinus automatic segmentation. RESULTS The largest values were revealed by using the automatic method for sinus volume measurement. These values were within the 95% confidence interval (±4.29 cm3) of the average sinus volume obtained from semi-automatic method. CONCLUSION The data obtained using the convolutional neural network technique (artificial intelligence) has a high correlation with the results of sinus morphometric analysis acquired through manual and semi-automatic methods. Automatic maxillary sinus segmentation technique does not require special user knowledge. This method is reproducible and it is implemented in a short time interval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大气的乌冬面完成签到,获得积分10
刚刚
刚刚
RUSTY完成签到,获得积分20
刚刚
田様应助11采纳,获得10
1秒前
1秒前
1秒前
1秒前
芝士完成签到,获得积分10
1秒前
pqy发布了新的文献求助10
1秒前
脆脆鲨完成签到,获得积分10
2秒前
2秒前
文安完成签到,获得积分10
2秒前
微笑如冰完成签到,获得积分10
3秒前
luo给luo的求助进行了留言
3秒前
晨曦发布了新的文献求助10
3秒前
3秒前
大方小白发布了新的文献求助10
3秒前
细腻沅发布了新的文献求助10
3秒前
科研通AI5应助FFF采纳,获得10
4秒前
4秒前
茉莉完成签到,获得积分10
4秒前
今今发布了新的文献求助10
5秒前
追寻的筝发布了新的文献求助10
5秒前
请叫我风吹麦浪应助Ll采纳,获得10
5秒前
Keming完成签到,获得积分10
5秒前
害羞聋五发布了新的文献求助10
6秒前
tulip发布了新的文献求助10
6秒前
6秒前
6秒前
嘟嘟发布了新的文献求助10
6秒前
7秒前
苏照杭应助jym采纳,获得10
7秒前
7秒前
7秒前
眼睛大又蓝完成签到,获得积分10
7秒前
kangkang完成签到,获得积分10
7秒前
8秒前
8秒前
绵绵完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762