Speech Emotion Recognition Considering Nonverbal Vocalization in Affective Conversations

话语 非语言交际 心理学 对话 特征(语言学) 短语 计算机科学 语音识别 笑声 沟通 人工智能 语言学 社会心理学 哲学
作者
Jia-Hao Hsu,Ming-Hsiang Su,Chung‐Hsien Wu,Yi‐Hsuan Chen
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1675-1686 被引量:47
标识
DOI:10.1109/taslp.2021.3076364
摘要

In real-life communication, nonverbal vocalization such as laughter, cries or other emotion interjections, within an utterance play an important role for emotion expression. In previous studies, only few emotion recognition systems consider nonverbal vocalization, which naturally exists in our daily conversation. In this work, both verbal and nonverbal sounds within an utterance are considered for emotion recognition of real-life affective conversations. Firstly, a support vector machine (SVM)-based verbal and nonverbal sound detector is developed. A prosodic phrase auto-tagger is further employed to extract the verbal/nonverbal sound segments. For each segment, the emotion and sound feature embeddings are respectively extracted using the deep residual networks (ResNets). Finally, a sequence of the extracted feature embeddings for the entire dialog turn are fed to an attentive long short-term memory (LSTM)-based sequence-to-sequence model to output an emotional sequence as recognition result. The NNIME corpus (The NTHU-NTUA Chinese interactive multimodal emotion corpus), which consists of verbal and nonverbal sounds, was adopted for system training and testing. 4766 single speaker dialogue turns in the audio data of the NNIME corpus were selected for evaluation. The experimental results showed that nonverbal vocalization was helpful for speech emotion recognition. For comparison, the proposed method based on decision-level fusion achieved an accuracy of 61.92% for speech emotion recognition outperforming the traditional methods as well as the feature-level and model-level fusion approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
吧啦吧啦完成签到,获得积分10
2秒前
隐形曼青应助西子阳采纳,获得10
3秒前
佳佳应助涛1118采纳,获得10
3秒前
完美世界应助涛1118采纳,获得10
3秒前
3秒前
高兴尔冬发布了新的文献求助10
3秒前
满天星辰发布了新的文献求助30
3秒前
3秒前
Lucas应助lin采纳,获得10
4秒前
调皮帽子完成签到,获得积分10
5秒前
5秒前
无花果应助路路通采纳,获得30
6秒前
Tender完成签到,获得积分10
6秒前
尹梓珊发布了新的文献求助10
7秒前
8秒前
Singularity应助自转无风采纳,获得10
9秒前
调皮帽子发布了新的文献求助10
9秒前
9秒前
wpppww发布了新的文献求助10
10秒前
jinghong完成签到 ,获得积分10
10秒前
lianqing发布了新的文献求助10
10秒前
11秒前
做好助焊剂关注了科研通微信公众号
11秒前
今后应助8899采纳,获得10
11秒前
yang发布了新的文献求助10
13秒前
传奇3应助偷乐采纳,获得10
13秒前
13秒前
今后应助吧啦吧啦采纳,获得10
14秒前
Upupupiu发布了新的文献求助10
14秒前
阿欣完成签到,获得积分10
15秒前
乌禅发布了新的文献求助10
16秒前
orixero应助西子阳采纳,获得10
17秒前
专注的乐荷完成签到,获得积分10
17秒前
淡然依凝发布了新的文献求助10
17秒前
zz完成签到 ,获得积分10
20秒前
20秒前
21秒前
乌禅完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998499
求助须知:如何正确求助?哪些是违规求助? 3538037
关于积分的说明 11273124
捐赠科研通 3277005
什么是DOI,文献DOI怎么找? 1807250
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810061