Speech Emotion Recognition Considering Nonverbal Vocalization in Affective Conversations

话语 非语言交际 心理学 对话 特征(语言学) 短语 计算机科学 语音识别 笑声 沟通 人工智能 语言学 社会心理学 哲学
作者
Jia-Hao Hsu,Ming-Hsiang Su,Chung‐Hsien Wu,Yi‐Hsuan Chen
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1675-1686 被引量:42
标识
DOI:10.1109/taslp.2021.3076364
摘要

In real-life communication, nonverbal vocalization such as laughter, cries or other emotion interjections, within an utterance play an important role for emotion expression. In previous studies, only few emotion recognition systems consider nonverbal vocalization, which naturally exists in our daily conversation. In this work, both verbal and nonverbal sounds within an utterance are considered for emotion recognition of real-life affective conversations. Firstly, a support vector machine (SVM)-based verbal and nonverbal sound detector is developed. A prosodic phrase auto-tagger is further employed to extract the verbal/nonverbal sound segments. For each segment, the emotion and sound feature embeddings are respectively extracted using the deep residual networks (ResNets). Finally, a sequence of the extracted feature embeddings for the entire dialog turn are fed to an attentive long short-term memory (LSTM)-based sequence-to-sequence model to output an emotional sequence as recognition result. The NNIME corpus (The NTHU-NTUA Chinese interactive multimodal emotion corpus), which consists of verbal and nonverbal sounds, was adopted for system training and testing. 4766 single speaker dialogue turns in the audio data of the NNIME corpus were selected for evaluation. The experimental results showed that nonverbal vocalization was helpful for speech emotion recognition. For comparison, the proposed method based on decision-level fusion achieved an accuracy of 61.92% for speech emotion recognition outperforming the traditional methods as well as the feature-level and model-level fusion approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hazardatom完成签到,获得积分10
3秒前
3秒前
长期素食发布了新的文献求助10
4秒前
ured发布了新的文献求助20
6秒前
123456完成签到,获得积分0
8秒前
11秒前
12秒前
科研通AI2S应助王一刀采纳,获得10
14秒前
隐形曼青应助ured采纳,获得10
15秒前
Louis发布了新的文献求助10
15秒前
AU发布了新的文献求助10
15秒前
MOON完成签到,获得积分10
16秒前
科研顺利完成签到 ,获得积分10
16秒前
16秒前
大牛完成签到,获得积分10
17秒前
17秒前
20秒前
21秒前
畅快新之发布了新的文献求助10
23秒前
24秒前
阳光大有应助侯MM采纳,获得10
25秒前
2587发布了新的文献求助10
26秒前
26秒前
凡帝发布了新的文献求助10
27秒前
Jasper应助长期素食采纳,获得10
29秒前
pink完成签到,获得积分10
29秒前
王一刀发布了新的文献求助10
30秒前
libs发布了新的文献求助10
30秒前
Johnho12047完成签到,获得积分10
30秒前
31秒前
化学胖子完成签到,获得积分10
32秒前
hao完成签到 ,获得积分10
33秒前
xx完成签到,获得积分10
34秒前
灰太狼养的小灰灰完成签到,获得积分10
36秒前
咕咕完成签到 ,获得积分10
36秒前
wk0635完成签到,获得积分10
36秒前
Hello应助乐观尔容采纳,获得10
43秒前
43秒前
小蘑菇应助skmksd采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323