Speech Emotion Recognition Considering Nonverbal Vocalization in Affective Conversations

话语 非语言交际 心理学 对话 特征(语言学) 短语 计算机科学 语音识别 笑声 沟通 人工智能 语言学 社会心理学 哲学
作者
Jia-Hao Hsu,Ming-Hsiang Su,Chung‐Hsien Wu,Yi‐Hsuan Chen
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 1675-1686 被引量:47
标识
DOI:10.1109/taslp.2021.3076364
摘要

In real-life communication, nonverbal vocalization such as laughter, cries or other emotion interjections, within an utterance play an important role for emotion expression. In previous studies, only few emotion recognition systems consider nonverbal vocalization, which naturally exists in our daily conversation. In this work, both verbal and nonverbal sounds within an utterance are considered for emotion recognition of real-life affective conversations. Firstly, a support vector machine (SVM)-based verbal and nonverbal sound detector is developed. A prosodic phrase auto-tagger is further employed to extract the verbal/nonverbal sound segments. For each segment, the emotion and sound feature embeddings are respectively extracted using the deep residual networks (ResNets). Finally, a sequence of the extracted feature embeddings for the entire dialog turn are fed to an attentive long short-term memory (LSTM)-based sequence-to-sequence model to output an emotional sequence as recognition result. The NNIME corpus (The NTHU-NTUA Chinese interactive multimodal emotion corpus), which consists of verbal and nonverbal sounds, was adopted for system training and testing. 4766 single speaker dialogue turns in the audio data of the NNIME corpus were selected for evaluation. The experimental results showed that nonverbal vocalization was helpful for speech emotion recognition. For comparison, the proposed method based on decision-level fusion achieved an accuracy of 61.92% for speech emotion recognition outperforming the traditional methods as well as the feature-level and model-level fusion approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助反骨仔采纳,获得10
刚刚
RoKi完成签到,获得积分10
刚刚
刚刚
1111发布了新的文献求助10
1秒前
打打应助木子采纳,获得10
1秒前
jackwang发布了新的文献求助10
2秒前
欸嘿完成签到,获得积分10
2秒前
2秒前
MOF发布了新的文献求助10
3秒前
夜无霜666发布了新的文献求助10
4秒前
FashionBoy应助跳跃采纳,获得10
4秒前
4秒前
5秒前
5秒前
B25060011完成签到,获得积分10
5秒前
6秒前
6秒前
友好亚男完成签到,获得积分10
7秒前
科研通AI6应助细腻黄豆采纳,获得30
7秒前
迅速西装发布了新的文献求助10
7秒前
香蕉觅云应助哈基米采纳,获得10
7秒前
8秒前
研友_VZG7GZ应助东方越彬采纳,获得20
8秒前
1111完成签到,获得积分10
8秒前
ChenYX发布了新的文献求助20
8秒前
嘿猪聪明完成签到,获得积分10
8秒前
wuhong发布了新的文献求助10
9秒前
anniezhang发布了新的文献求助10
9秒前
多一点点完成签到,获得积分10
9秒前
冰雪发布了新的文献求助10
10秒前
DA完成签到,获得积分10
10秒前
cetomacrogol完成签到,获得积分10
10秒前
10秒前
11秒前
小巧钢笔完成签到,获得积分10
11秒前
suandlin完成签到 ,获得积分10
11秒前
斯文败类应助aaa采纳,获得10
11秒前
12秒前
风格化橙发布了新的文献求助10
12秒前
zoequest发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438