全氟辛烷
优势比
置信区间
医学
四分位数
人口
代谢综合征
内科学
化学
环境卫生
肥胖
磺酸盐
有机化学
钠
作者
Shu Yu,Weiyue Feng,Zi-Mian Liang,Xianmin Zeng,Michael S. Bloom,Guocheng Hu,Yang Zhou,Yanqiu Ou,Chu Chu,Qingqing Li,Yunjiang Yu,Xiao‐Wen Zeng,Guang‐Hui Dong
标识
DOI:10.1016/j.envpol.2021.117078
摘要
Chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), are ubiquitous alternatives to perfluorooctane sulfonate (PFOS), a widely used poly- and perfluoroalkyl substance (PFAS). Despite in vivo and in vitro evidence of metabolic toxicity, no study has explored associations of Cl-PFESAs concentrations with metabolic syndrome (MetS) in a human population. To help address this data gap, we quantified 32 PFAS, including 2 PFOS alternative Cl-PFESAs (6:2 and 8:2 Cl-PFESAs) in serum from 1228 adults participating in the cross-sectional Isomers of C8 Health Project in China study. The odds ratios (ORs) and 95% confidence intervals (CIs) of MetS and its various components were estimated using individual PFAS as a continuous or categorical predictor in multivariate regression models. The association between the overall mixture of PFAS and MetS was examined using probit Bayesian Kernel Machine Regression (BKMR-P). Greater serum PFAS concentrations were associated with higher odds of MetS and demonstrated a statistically significant dose-response trend (P for trend < 0.001). For example, each ln-unit (ng/mL) increase in serum 6:2 Cl-PFESA was associated with a higher prevalence of MetS (OR = 1.52, 95% CI: 1.25, 1.85). MetS was also 2.26 (95% CI: 1.59, 3.23) times more common in the highest quartile of serum 6:2 Cl-PFESA concentration than the lowest, and particularly high among women (OR = 6.41, 95% CI: 3.65, 11.24). The BKMR-P analysis showed a positive association between the overall mixture of measured PFAS and the odds of MetS, but was only limited to women. While our results suggest that exposure to Cl-PFESAs was associated with MetS, additional longitudinal studies are needed to more definitively address the potential health concerns of these PFOS alternatives.
科研通智能强力驱动
Strongly Powered by AbleSci AI