生物能学
癫痫
氧化磷酸化
斑马鱼
体内
神经科学
生物
癫痫持续状态
线粒体
细胞生物学
医学
生物化学
基因
生物技术
作者
Luana Moro,Giovana Rech,Amanda M. Linazzi,Thainá Garbino dos Santos,Diogo Lösch de Oliveira
出处
期刊:Brain Research
[Elsevier BV]
日期:2021-04-22
卷期号:1765: 147498-147498
被引量:2
标识
DOI:10.1016/j.brainres.2021.147498
摘要
Abstract Mitochondria play key roles in brain metabolism. Not surprisingly, mitochondria dysfunction is a ubiquitous cause of neurodegenerative diseases. In turn, acquired forms of epilepsy etiology is specifically intriguing since mitochondria function and dysfunction remain not completely enlightened. Investigation in the field includes models of epileptic disorder using mainly rodents followed by mitochondrial function evaluation, which in general evidenced controversial data. So, we considered the efforts and limitations in this research field and we took into account that sample preparation and quality are critical for bioenergetics investigation. For these reasons the aim of the present study was to develop a thorough protocol for adult zebrafish brain-tissue dissociation to evaluate oxygen consumption flux and reach the bioenergetics profile in health and models of epileptic disorder in both, in vitro using pentylenetetrazole (PTZ) and N-methyl-D-Aspartic acid (NMDA), and in vivo after kainic acid (KA)-induced status epilepticus. In conclusion, we verify that fire-polished glass Pasteur pipette is eligible to brain-tissue dissociation and to study mitochondrial function and dysfunction in adult zebrafish. The results give evidence for large effect size in increase of coupling efficiency respiration (p/O2) correlated to treatment with PTZ and spare respiratory capacity (SRC) in KA-induced model indicating oxidative phosphorylation (OXPHOS) variable alterations. Further investigation is needed in order to clarify the bioenergetics role as well as other mitochondrial functions in epilepsy.
科研通智能强力驱动
Strongly Powered by AbleSci AI