The value of human data annotation for machine learning based anomaly detection in environmental systems

异常检测 计算机科学 人工智能 机器学习 注释 异常(物理) 优势和劣势 无监督学习 过程(计算) 监督学习 数据挖掘 人工神经网络 认识论 操作系统 物理 哲学 凝聚态物理
作者
Stefania Russo,Michael D. Besmer,Frank Blumensaat,Damien Bouffard,Andy Disch,Frederik Hammes,Angelika Hess,Moritz Lürig,Blake Matthews,Camille Minaudo,Eberhard Morgenroth,Viet Tran-Khac,Kris Villez
出处
期刊:Water Research [Elsevier]
卷期号:206: 117695-117695 被引量:30
标识
DOI:10.1016/j.watres.2021.117695
摘要

Anomaly detection is the process of identifying unexpected data samples in datasets. Automated anomaly detection is either performed using supervised machine learning models, which require a labelled dataset for their calibration, or unsupervised models, which do not require labels. While academic research has produced a vast array of tools and machine learning models for automated anomaly detection, the research community focused on environmental systems still lacks a comparative analysis that is simultaneously comprehensive, objective, and systematic. This knowledge gap is addressed for the first time in this study, where 15 different supervised and unsupervised anomaly detection models are evaluated on 5 different environmental datasets from engineered and natural aquatic systems. To this end, anomaly detection performance, labelling efforts, as well as the impact of model and algorithm tuning are taken into account. As a result, our analysis reveals the relative strengths and weaknesses of the different approaches in an objective manner without bias for any particular paradigm in machine learning. Most importantly, our results show that expert-based data annotation is extremely valuable for anomaly detection based on machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MM发布了新的文献求助10
刚刚
lzl完成签到,获得积分10
刚刚
1秒前
乐乐应助wtzhang16采纳,获得10
2秒前
3秒前
橙子发布了新的文献求助10
3秒前
歪比巴卜发布了新的文献求助10
4秒前
洪武发布了新的文献求助10
7秒前
无限的路人完成签到,获得积分10
8秒前
Ava应助清秀白梦采纳,获得10
8秒前
夏夜完成签到 ,获得积分10
8秒前
赘婿应助MM采纳,获得10
8秒前
9秒前
10秒前
cd完成签到 ,获得积分10
11秒前
汉堡包应助震动的友琴采纳,获得10
11秒前
zz完成签到,获得积分10
12秒前
碧蓝面包发布了新的文献求助10
14秒前
虚幻人完成签到,获得积分10
14秒前
16秒前
zhw发布了新的文献求助10
17秒前
18秒前
科研通AI5应助和谐尔阳采纳,获得10
18秒前
19秒前
20秒前
独孤阳光完成签到,获得积分10
22秒前
Lucas应助kk采纳,获得10
22秒前
KinaC02发布了新的文献求助10
22秒前
冷酷头箍完成签到 ,获得积分20
22秒前
MM发布了新的文献求助10
23秒前
23秒前
洪武完成签到,获得积分10
24秒前
24秒前
从容的帆布鞋完成签到 ,获得积分10
24秒前
三金发布了新的文献求助10
25秒前
26秒前
26秒前
夏夏完成签到,获得积分20
26秒前
小二郎应助鲤鱼寒荷采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554712
求助须知:如何正确求助?哪些是违规求助? 3130546
关于积分的说明 9387446
捐赠科研通 2829867
什么是DOI,文献DOI怎么找? 1555725
邀请新用户注册赠送积分活动 726278
科研通“疑难数据库(出版商)”最低求助积分说明 715542