C2MA-Net: Cross-Modal Cross-Attention Network for Acute Ischemic Stroke Lesion Segmentation Based on CT Perfusion Scans

计算机科学 分割 人工智能 编码器 情态动词 模式识别(心理学) 模态(人机交互) 图像分割 深度学习 操作系统 化学 高分子化学
作者
Tianyu Shi,Huiyan Jiang,Bin Zheng
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:69 (1): 108-118 被引量:27
标识
DOI:10.1109/tbme.2021.3087612
摘要

Based on the hypothesis that adding a cross-modal and cross-attention (C2MA) mechanism into a deep learning network improves accuracy and efficacy of medical image segmentation, we propose to test a novel network to segment acute ischemic stroke (AIS) lesions from four CT perfusion (CTP) maps.The proposed network uses a C2MA module directly to establish a spatial-wise relationship by using the multigroup non-local attention operation between two modal features and performs dynamic group-wise recalibration through group attention block. This C2MA-Net has a multipath encoder-decoder architecture, in which each modality is processed in different streams on the encoding path, and the pair related parameter modalities are used to bridge attention across multimodal information through the C2MA module. A public dataset involving 94 training and 62 test cases are used to build and evaluate the C2MA-Net. AIS segmentation results on testing cases are analyzed and compared with other state-of-the-art models reported in the literature.By calculating several average evaluation scores, C2MA-network improves Recall and F2 scores by 6% and 1%, respectively. In the ablation experiment, the F1 score of C2MA-Net is at least 7.8% higher than that of single-input single-modal self-attention networks.This study demonstrates advantages of applying C2MA-network to segment AIS lesions, which yields promising segmentation accuracy, and achieves semantic decoupling by processing different parameter modalities separately.Proving the potential of cross-modal interactions in attention to assist identifying new imaging biomarkers for more accurately predicting AIS prognosis in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助等待秀采纳,获得10
刚刚
友好的天奇完成签到 ,获得积分10
刚刚
水文小白完成签到,获得积分10
2秒前
6秒前
积极的忆曼完成签到,获得积分10
7秒前
有魅力荟应助猪猪hero采纳,获得10
7秒前
夏晴发布了新的文献求助10
8秒前
虚幻的凤完成签到,获得积分10
10秒前
11秒前
英姑应助小熊采纳,获得10
11秒前
淳于白凝完成签到,获得积分10
11秒前
卑微学术人完成签到 ,获得积分10
12秒前
今后应助baiabi采纳,获得10
12秒前
zzz完成签到,获得积分10
12秒前
dunhuang完成签到,获得积分10
13秒前
YY完成签到,获得积分10
13秒前
木木完成签到,获得积分10
14秒前
alooof完成签到 ,获得积分10
14秒前
15秒前
瑾瑜玉完成签到 ,获得积分10
15秒前
eternity136完成签到,获得积分10
16秒前
风趣尔琴完成签到,获得积分10
16秒前
团团完成签到,获得积分10
17秒前
直率的宛海完成签到,获得积分10
18秒前
不发一区不改名完成签到 ,获得积分10
19秒前
等待秀发布了新的文献求助10
19秒前
炙热胡萝卜完成签到 ,获得积分10
21秒前
阳和启蛰完成签到 ,获得积分10
23秒前
科研通AI2S应助苹果白凡采纳,获得10
23秒前
Leofar完成签到 ,获得积分10
24秒前
bjr完成签到 ,获得积分10
24秒前
tg2024完成签到 ,获得积分10
25秒前
wph完成签到,获得积分10
25秒前
26秒前
航行天下完成签到 ,获得积分10
26秒前
香樟遗完成签到 ,获得积分10
27秒前
BaronR完成签到,获得积分10
27秒前
scitiancai完成签到,获得积分10
28秒前
28秒前
风-FBDD完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466849
求助须知:如何正确求助?哪些是违规求助? 3059733
关于积分的说明 9067476
捐赠科研通 2750209
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696923