已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting disease progression and mortality in metastatic colorectal cancer patients (mCRC) through an artificial intelligence-based analytical tool.

医学 危险系数 内科学 结直肠癌 队列 肿瘤科 人口统计学的 疾病 无进展生存期 临床试验 癌症 置信区间 总体生存率 社会学 人口学
作者
Carlos M. Galmarini,Maximiliano Lucius
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:39 (15_suppl): 1549-1549
标识
DOI:10.1200/jco.2021.39.15_suppl.1549
摘要

1549 Background: Predicting the clinical course of metastatic disease remains a key challenge in CRC. Estimating prognosis of these late-stage patients can avoid undertreatment or overtreatment and also guide the follow-up intensity. This study has investigated the ability of an artificial intelligence-based analytical tool to identify those mCRC patients with high risk of disease progression and mortality based on their clinical parameters. Methods: Through www.projectdatasphere.org we accessed datasets of two randomised phase III trials including chemo-naïve (NCT00364013, n = 1183 patients) and chemo-refractory (NCT00113763, N = 483) mCRC patients. We generated synthetic fingerprints (SF) for each patient through the integration of 44 clinical features (demographics, anthropometrics, medical history, blood tests and treatment characteristics) collected, respectively, during the screening phase and the first month of inclusion in each trial. These SF were then input into a deep learning framework (DLF) to identify subgroup of patients based on their similarities. The resultant clusters were correlated with progression-free survival (PFS) and overall survival (OS). Results: After discarding missing data, 861 chemo-naïve and 341 chemo-resistant mCRC patients were eligible for the study. In the chemo-naïve cohort, the SF/DLF system was able to detect two different clusters: C0 (n = 31) and C1 (n = 830). Patients in C0 had a higher risk of progression (median PFS 6.2 months vs. 9.1 months; hazard ratio 1.83, 95% CI 1.16-2.88; p = 0.008) and death (median OS 13.2 months vs. 20.1 months; hazard ratio 2.84, 95% CI 1.68-4.80; p < 0.001) compared to patients in C1. When applied to the chemo-resistant cohort, the SF/DLF system was again able to identify two different clusters: P0 (n = 159) and P1 (n = 182). Patients in P0 had a higher risk of progression (median PFS 1.7 months vs. 1.8 months; hazard ratio 1.32, 95% CI 1.05-1.67; p < 0.001) and death (median OS 6.1 months vs. 6.8 months; hazard ratio 1.34, 95% CI 1.07-1.68; p = 0.01) compared to patients in P1. In both cases, feature contribution analysis showed that major differences between clusters were related to clinical status, anthropometrics and haematological and biochemistry tests. Conclusions: Our SF/DLF system can identify mCRC subtypes based on distinct clinical features that correlate with higher risk of progression and death. Further work is required to validate this approach as a novel prognostic biomarker tool for monitoring mCRC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyz完成签到 ,获得积分10
1秒前
云辞忧完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
于是乎发布了新的文献求助10
3秒前
4秒前
NexusExplorer应助Davy_Y采纳,获得10
5秒前
康师傅冰红茶完成签到 ,获得积分10
5秒前
7秒前
今我来思完成签到 ,获得积分10
8秒前
顺利的寒云完成签到 ,获得积分10
8秒前
xin完成签到 ,获得积分10
8秒前
佐敦完成签到,获得积分10
8秒前
9秒前
???完成签到,获得积分10
9秒前
ff发布了新的文献求助30
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
13秒前
Babysbreath完成签到,获得积分10
14秒前
1204发布了新的文献求助10
14秒前
抽疯的电风扇13完成签到 ,获得积分10
14秒前
要减肥的凡旋完成签到 ,获得积分10
15秒前
万木春完成签到 ,获得积分10
15秒前
难过的醉香完成签到,获得积分10
16秒前
江上清风完成签到 ,获得积分10
19秒前
芈钥完成签到 ,获得积分10
21秒前
尔信完成签到 ,获得积分10
22秒前
黑巧的融化完成签到 ,获得积分10
22秒前
梁超完成签到,获得积分10
23秒前
23秒前
良良丸完成签到 ,获得积分10
24秒前
mov完成签到,获得积分10
24秒前
炸鸡完成签到 ,获得积分10
26秒前
张丽鑫发布了新的文献求助10
26秒前
DrLee完成签到,获得积分10
26秒前
zhen发布了新的文献求助10
27秒前
鱼儿游啊游完成签到,获得积分10
29秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225309
关于积分的说明 9762492
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185

今日热心研友

NZH
20
nenoaowu
2
MchemG
2
pluto
10
Xiaoxiao
10
安静的远山
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10