A new structure optimization method for forced air-cooling system based on the simplified multi-physics model

电池(电) 功率(物理) 热的 机械工程 工程类 核工程 模拟 水冷 物理 热力学
作者
Chao Lyu,Yankong Song,Lixin Wang,Yaming Ge,Rui Xiong,Tian Lan
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:198: 117455-117455 被引量:25
标识
DOI:10.1016/j.applthermaleng.2021.117455
摘要

Abstract Energy storage systems equipped with lithium-ion batteries are susceptible to fire and explosion hazards, especially when such batteries are used to power electric vehicles. One of the most important reasons for these undesirable consequences is the lack of an effective battery thermal management system. In this regard, an optimization method for the forced air-cooling system is introduced based on a simplified multi-physics simulation model. The simplified multi-physics model consists an electro-thermal coupling model and a flow resistance network model. The accuracy of the simplified multi-physics model is verified by comparison with experimental results. Subsequently, the deflector angle and cell space in the forced air-cooling system are optimized, respectively, based on the simplified multi-physics model, via an exhaustive search method and a genetic algorithm. Finally, the verification platform for the forced air-cooling system is built. After the optimization of deflector angle and cell space, the maximum temperature and temperature difference are limited to 38℃ and 2℃, with a reduction of about 30% and 80%, with respect to the unoptimized version. The consistency between the simulated and measured maximum temperature further confirms the effectiveness of the structure optimization method. In that, the method proposed in this paper is of great significance to shorten the time of structural optimization for forced air-cooling systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬发布了新的文献求助10
1秒前
3秒前
华仔应助袁向薇采纳,获得10
3秒前
北北完成签到,获得积分10
4秒前
4秒前
酷波er应助实现一个梦想采纳,获得30
5秒前
5秒前
5秒前
123完成签到,获得积分10
5秒前
6秒前
阳阳发布了新的文献求助10
6秒前
Tourist应助djbj2022采纳,获得10
6秒前
健壮易巧完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
善学以致用应助Rian采纳,获得10
8秒前
8秒前
8秒前
TEMPO发布了新的文献求助10
8秒前
10秒前
11秒前
Nov发布了新的文献求助10
11秒前
秘书发布了新的文献求助10
11秒前
11秒前
冷傲向雪完成签到,获得积分20
12秒前
今后应助Tigher采纳,获得30
14秒前
15秒前
15秒前
可爱的函函应助冷傲向雪采纳,获得10
17秒前
17秒前
小吴同学发布了新的文献求助10
18秒前
刘敦銮完成签到 ,获得积分10
20秒前
bioglia完成签到,获得积分10
20秒前
Rian发布了新的文献求助10
21秒前
23秒前
23秒前
小蘑菇应助moumou采纳,获得10
27秒前
感冒药完成签到 ,获得积分10
27秒前
27秒前
Owen应助典雅的俊驰采纳,获得10
28秒前
阿米娅完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741