Construction of novel PTh-BiOBr composite with enhanced photocatalytic degradation of Bisphenol A

光催化 双酚A 降级(电信) 材料科学 单体 X射线光电子能谱 聚噻吩 催化作用 激进的 化学工程 光化学 复合数 核化学 化学 聚合物 有机化学 复合材料 导电聚合物 电信 计算机科学 环氧树脂 工程类
作者
Haijun Wu,Puyang Zhou,Jagadeesh Kumar Alagarasan,Junjie Jing,Ting Zhou,Yuanguo Xu
出处
期刊:Advanced Powder Technology [Elsevier]
卷期号:32 (7): 2390-2397 被引量:21
标识
DOI:10.1016/j.apt.2021.05.022
摘要

The high recombination rates of photogenerated electron-holes significant inhibit the catalytic activity of semiconductor photocatalysts. In this study, novel polythiophene (PTh)/BiOBr hybrids were successfully synthesized using an effortless method to achieve the degradation of Bisphenol A (BPA). According to the results, the introduction of polythiophene (PTh) significantly improved the separation efficiency of photocharge carriers, thus enhancing the photocatalytic activity of PTh-BiOBr. The X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectrometer were applied to characterize the samples structure and light absorption properties. The degradation properties of BPA of materials under visible light prove that the photocatalytic capabilities of the complex can be improved significantly compared to BiOBr monomers, thus confirming the above-mentioned hypothesis. Under the same experimental conditions, 0.5% PTh-BiOBr was obtained for the optimal compound, and the degradation efficiency of BPA after 100 min of visible light was 83%, which is 34% higher than that of the BiOBr monomer. In the process of photocatalytic degradation of BPA by the catalyst, the active free radicals of the catalyst were obtained by ESR and free radical capture experiment, while a possible photocatalytic degradation mechanism was proposed on this basis. From O2, the •O2– plays a major role in the process of photo-react degradation of BPA, while h+ and •OH play a part. This work provides a more eco-friendly and efficient way for BiOBr retouching.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SINET完成签到,获得积分10
1秒前
啊啊啊啊轩完成签到,获得积分10
1秒前
11发布了新的文献求助10
1秒前
零零完成签到 ,获得积分10
2秒前
3秒前
4秒前
华仔应助叶远望采纳,获得10
4秒前
yuyuyuyuyuyuyu完成签到,获得积分10
6秒前
6秒前
7秒前
蒋大饼完成签到,获得积分10
7秒前
Miyo发布了新的文献求助10
9秒前
9秒前
9秒前
看文献了完成签到,获得积分10
9秒前
ningning发布了新的文献求助10
10秒前
10秒前
cslghe发布了新的文献求助10
10秒前
11马完成签到,获得积分10
10秒前
jiuwu完成签到,获得积分10
10秒前
11秒前
11秒前
思源应助Yang采纳,获得10
12秒前
12秒前
唐隶发布了新的文献求助10
12秒前
FashionBoy应助Ao采纳,获得10
13秒前
ljl发布了新的文献求助10
14秒前
封妖妖完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
Antonio发布了新的文献求助10
14秒前
别吃我的鱼完成签到,获得积分10
15秒前
15秒前
蓝天发布了新的文献求助10
15秒前
zhou_完成签到,获得积分10
15秒前
Liiii完成签到,获得积分10
16秒前
16秒前
金光闪闪完成签到,获得积分10
17秒前
Owen应助Ben采纳,获得10
18秒前
小佳完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652693
求助须知:如何正确求助?哪些是违规求助? 4787996
关于积分的说明 15061272
捐赠科研通 4811158
什么是DOI,文献DOI怎么找? 2573692
邀请新用户注册赠送积分活动 1529549
关于科研通互助平台的介绍 1488312