Identifying vital nodes from local and global perspectives in complex networks

计算机科学 复杂网络 人工智能 数据科学 万维网
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Zejun Sun
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:186: 115778-115778 被引量:101
标识
DOI:10.1016/j.eswa.2021.115778
摘要

Recognition of vital nodes in complex networks retains great importance in the improvement of network’s robustness and vulnerability. Consistent research proposed various approaches like local-structure-based methods, e.g., degree centrality, pagerank, etc., and global-structure-based methods, e.g., betweenness, closeness centrality, etc., to evaluate the concerned nodes. Though their performance is amazingly well, these methods have undergone some intrinsic limitations. For instance, local-structure-based methods lose some sort of global information and global-structure-based methods are too complicated to measure the important nodes, particularly in networks where sizes become large. To tackle these challenges, we propose a Local-and-Global-Centrality (LGC) measuring algorithm to identify the vital nodes through handling local as well as global topological aspects of a network simultaneously. In order to assess the performance of the proposed algorithm with respect to the state-of-the-art methodologies, we performed experiments through LCG, Betweenness (BNC), Closeness (CNC), Gravity (GIC), Page-Rank (PRC), Eigenvector (EVC), Global and Local Structure (GLS), Global Structure Model (GSM), and Profit-leader (PLC) methods on differently sized real-world networks. Our experiments disclose that LGC outperformed many of the compared techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
优美电脑发布了新的文献求助10
1秒前
天天快乐应助小确幸采纳,获得10
2秒前
3秒前
4秒前
白衣轻叹发布了新的文献求助30
4秒前
zaadasd发布了新的文献求助10
5秒前
luchen发布了新的文献求助10
5秒前
5秒前
我是老大应助dove采纳,获得10
5秒前
Cecila完成签到,获得积分20
6秒前
英俊的若血完成签到,获得积分10
6秒前
英俊的铭应助大好人采纳,获得10
6秒前
丘比特应助mue采纳,获得10
7秒前
隐形曼青应助氧化石墨烯采纳,获得10
8秒前
Orange应助1.1采纳,获得30
8秒前
平常的玲发布了新的文献求助10
8秒前
8秒前
张津浩发布了新的文献求助10
9秒前
Cecila发布了新的文献求助10
9秒前
MnO2fff完成签到,获得积分10
10秒前
10秒前
大个应助刘钱美子采纳,获得10
11秒前
挖掘机完成签到,获得积分10
11秒前
易海之旅发布了新的文献求助10
11秒前
科研通AI2S应助夏铖铄采纳,获得10
12秒前
肉卷完成签到,获得积分10
14秒前
小确幸完成签到,获得积分10
14秒前
浩铭完成签到,获得积分10
14秒前
小吕小吕发布了新的文献求助20
16秒前
xiaobai发布了新的文献求助30
16秒前
隔壁的镇长完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助优美电脑采纳,获得10
16秒前
16秒前
yxdjzwx发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
17秒前
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344