Identifying vital nodes from local and global perspectives in complex networks

计算机科学 复杂网络 人工智能 数据科学 万维网
作者
Aman Ullah,Bin Wang,Jinfang Sheng,Jun Long,Nasrullah Khan,Zejun Sun
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:186: 115778-115778 被引量:130
标识
DOI:10.1016/j.eswa.2021.115778
摘要

Recognition of vital nodes in complex networks retains great importance in the improvement of network’s robustness and vulnerability. Consistent research proposed various approaches like local-structure-based methods, e.g., degree centrality, pagerank, etc., and global-structure-based methods, e.g., betweenness, closeness centrality, etc., to evaluate the concerned nodes. Though their performance is amazingly well, these methods have undergone some intrinsic limitations. For instance, local-structure-based methods lose some sort of global information and global-structure-based methods are too complicated to measure the important nodes, particularly in networks where sizes become large. To tackle these challenges, we propose a Local-and-Global-Centrality (LGC) measuring algorithm to identify the vital nodes through handling local as well as global topological aspects of a network simultaneously. In order to assess the performance of the proposed algorithm with respect to the state-of-the-art methodologies, we performed experiments through LCG, Betweenness (BNC), Closeness (CNC), Gravity (GIC), Page-Rank (PRC), Eigenvector (EVC), Global and Local Structure (GLS), Global Structure Model (GSM), and Profit-leader (PLC) methods on differently sized real-world networks. Our experiments disclose that LGC outperformed many of the compared techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
LY发布了新的文献求助10
刚刚
hyc关闭了hyc文献求助
刚刚
刚刚
zeannezg发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI6应助Polong_star采纳,获得10
1秒前
难过盼海完成签到,获得积分10
1秒前
丘比特应助waiho采纳,获得10
1秒前
着急的猴完成签到 ,获得积分10
1秒前
彩色乐荷完成签到,获得积分20
1秒前
白betty完成签到,获得积分10
2秒前
2秒前
明月照我程完成签到,获得积分10
2秒前
2秒前
3秒前
酷波er应助雷马采纳,获得10
4秒前
共享精神应助Toivo采纳,获得10
4秒前
唠叨的富发布了新的文献求助10
4秒前
chen关注了科研通微信公众号
4秒前
4秒前
ew.发布了新的文献求助10
4秒前
LYYYY完成签到 ,获得积分10
4秒前
4秒前
4秒前
Muddle完成签到,获得积分10
5秒前
叶不言发布了新的文献求助10
5秒前
天天快乐应助徐彬荣采纳,获得10
6秒前
DamienC发布了新的文献求助10
6秒前
恋空完成签到 ,获得积分10
6秒前
缓慢的孤兰完成签到,获得积分10
6秒前
6秒前
随便起个名完成签到,获得积分10
7秒前
俊逸水桃发布了新的文献求助10
7秒前
完美钥匙发布了新的文献求助10
8秒前
9秒前
yunfulu29完成签到,获得积分10
9秒前
细心的易文完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748